Journal Article FZJ-2022-05902

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Polyphenols-Based Nanosheets of Propolis Modulate Cytotoxic Amyloid Fibril Assembly of α-Synuclein

 ;  ;  ;  ;  ;  ;  ;  ;

2022
ACS Publ. Washington, DC

ACS chemical neuroscience 13(22), 3168 - 3179 () [10.1021/acschemneuro.2c00465]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Natural compounds with anti-aggregation capacity are increasingly recognized as viable candidates against neurodegenerative diseases. Recently, the polyphenolic fraction of propolis (PFP), a complex bee product, has been shown to inhibit amyloid aggregation of a model protein especially in the nanosheet form. Here, we examine the aggregation-modulating effects of the PFP nanosheets on α-synuclein (α-syn), an intrinsically disordered protein involved in the pathogenesis of Parkinson's disease. Based on a range of biophysical data including intrinsic and extrinsic fluorescence, circular dichroism (CD) data, and nuclear magnetic resonance spectroscopy, we propose a model for the interaction of α-syn with PFP nanosheets, where the positively charged N-terminal and the middle non-amyloid component regions of α-syn act as the main binding sites with the negatively charged PFP nanosheets. The Thioflavin T (ThT) fluorescence, Congo red absorbance, and CD data reveal a prominent dose-dependent inhibitory effect of PFP nanosheets on α-syn amyloid aggregation, and the microscopy images and MTT assay data suggest that the PFP nanosheets redirect α-syn aggregation toward nontoxic off-pathway oligomers. When preformed α-syn amyloid fibrils are present, fluorescence images show co-localization of PFP nanosheets and ThT, further confirming the binding of PFP nanosheets with α-syn amyloid fibrils. Taken together, our results demonstrate the binding and anti-aggregation activity of PFP nanosheets in a disease-related protein system and propose them as potential nature-based tools for probing and targeting pathological protein aggregates in neurodegenerative diseases.

Classification:

Contributing Institute(s):
  1. Strukturbiochemie (IBI-7)
Research Program(s):
  1. 5241 - Molecular Information Processing in Cellular Systems (POF4-524) (POF4-524)

Appears in the scientific report 2022
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-7
Workflow collections > Public records
Publications database

 Record created 2022-12-15, last modified 2023-02-24


Fulltext:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)