000916126 001__ 916126
000916126 005__ 20240313103119.0
000916126 0247_ $$2doi$$a10.3389/fnint.2022.923468
000916126 0247_ $$2Handle$$a2128/33517
000916126 0247_ $$2pmid$$a36310713
000916126 0247_ $$2WOS$$aWOS:000876845600001
000916126 037__ $$aFZJ-2022-05957
000916126 041__ $$aEnglish
000916126 082__ $$a610
000916126 1001_ $$0P:(DE-Juel1)176595$$aSchulte to Brinke, Tobias$$b0$$eCorresponding author$$ufzj
000916126 245__ $$aCharacteristic columnar connectivity caters to cortical computation: Replication, simulation, and evaluation of a microcircuit model
000916126 260__ $$aLausanne$$bFrontiers Research Foundation$$c2022
000916126 3367_ $$2DRIVER$$aarticle
000916126 3367_ $$2DataCite$$aOutput Types/Journal article
000916126 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673521672_31061
000916126 3367_ $$2BibTeX$$aARTICLE
000916126 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916126 3367_ $$00$$2EndNote$$aJournal Article
000916126 520__ $$aThe neocortex, and with it the mammalian brain, achieves a level of computational efficiency like no other existing computational engine. A deeper understanding of its building blocks (cortical microcircuits), and their underlying computational principles is thus of paramount interest. To this end, we need reproducible computational models that can be analyzed, modified, extended and quantitatively compared. In this study, we further that aim by providing a replication of a seminal cortical column model. This model consists of noisy Hodgkin-Huxley neurons connected by dynamic synapses, whose connectivity scheme is based on empirical findings from intracellular recordings. Our analysis confirms the key original finding that the specific, data-based connectivity structure enhances the computational performance compared to a variety of alternatively structured control circuits. For this comparison, we use tasks based on spike patterns and rates that require the systems not only to have simple classification capabilities, but also to retain information over time and to be able to compute nonlinear functions. Going beyond the scope of the original study, we demonstrate that this finding is independent of the complexity of the neuron model, which further strengthens the argument that it is the connectivity which is crucial. Finally, a detailed analysis of the memory capabilities of the circuits reveals a stereotypical memory profile common across all circuit variants. Notably, the circuit with laminar structure does not retain stimulus any longer than any other circuit type. We therefore conclude that the model's computational advantage lies in a sharper representation of the stimuli.
000916126 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000916126 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x1
000916126 536__ $$0G:(GEPRIS)491111487$$aOpen-Access-Publikationskosten Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x2
000916126 536__ $$0G:(DE-Juel-1)PF-JARA-SDS005$$aSDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005)$$cPF-JARA-SDS005$$x3
000916126 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916126 7001_ $$0P:(DE-Juel1)165640$$aDuarte, Renato$$b1
000916126 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b2$$ufzj
000916126 770__ $$aReproducability in Neuroscience
000916126 773__ $$0PERI:(DE-600)2452962-X$$a10.3389/fnint.2022.923468$$gVol. 16, p. 923468$$p923468$$tFrontiers in integrative neuroscience$$v16$$x1662-5145$$y2022
000916126 8564_ $$uhttps://juser.fz-juelich.de/record/916126/files/fnint-16-923468-1.pdf$$yOpenAccess
000916126 8767_ $$d2022-12-27$$eAPC$$jDeposit$$z2507,50 USD
000916126 909CO $$ooai:juser.fz-juelich.de:916126$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000916126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176595$$aForschungszentrum Jülich$$b0$$kFZJ
000916126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b2$$kFZJ
000916126 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000916126 9141_ $$y2022
000916126 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000916126 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
000916126 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000916126 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT INTEGR NEUROSC : 2021$$d2022-11-11
000916126 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T10:28:29Z
000916126 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T10:28:29Z
000916126 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
000916126 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-11
000916126 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000916126 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000916126 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916126 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T10:28:29Z
000916126 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-11
000916126 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000916126 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000916126 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000916126 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000916126 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000916126 920__ $$lyes
000916126 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000916126 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000916126 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000916126 9801_ $$aAPC
000916126 9801_ $$aFullTexts
000916126 980__ $$ajournal
000916126 980__ $$aVDB
000916126 980__ $$aUNRESTRICTED
000916126 980__ $$aI:(DE-Juel1)INM-6-20090406
000916126 980__ $$aI:(DE-Juel1)IAS-6-20130828
000916126 980__ $$aI:(DE-Juel1)INM-10-20170113
000916126 980__ $$aAPC
000916126 981__ $$aI:(DE-Juel1)IAS-6-20130828