Journal Article FZJ-2022-05957

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Characteristic columnar connectivity caters to cortical computation: Replication, simulation, and evaluation of a microcircuit model

 ;  ;

2022
Frontiers Research Foundation Lausanne

Frontiers in integrative neuroscience 16, 923468 () [10.3389/fnint.2022.923468] special issue: "Reproducability in Neuroscience"

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: The neocortex, and with it the mammalian brain, achieves a level of computational efficiency like no other existing computational engine. A deeper understanding of its building blocks (cortical microcircuits), and their underlying computational principles is thus of paramount interest. To this end, we need reproducible computational models that can be analyzed, modified, extended and quantitatively compared. In this study, we further that aim by providing a replication of a seminal cortical column model. This model consists of noisy Hodgkin-Huxley neurons connected by dynamic synapses, whose connectivity scheme is based on empirical findings from intracellular recordings. Our analysis confirms the key original finding that the specific, data-based connectivity structure enhances the computational performance compared to a variety of alternatively structured control circuits. For this comparison, we use tasks based on spike patterns and rates that require the systems not only to have simple classification capabilities, but also to retain information over time and to be able to compute nonlinear functions. Going beyond the scope of the original study, we demonstrate that this finding is independent of the complexity of the neuron model, which further strengthens the argument that it is the connectivity which is crucial. Finally, a detailed analysis of the memory capabilities of the circuits reveals a stereotypical memory profile common across all circuit variants. Notably, the circuit with laminar structure does not retain stimulus any longer than any other circuit type. We therefore conclude that the model's computational advantage lies in a sharper representation of the stimuli.

Classification:

Contributing Institute(s):
  1. Computational and Systems Neuroscience (INM-6)
  2. Theoretical Neuroscience (IAS-6)
  3. Jara-Institut Brain structure-function relationships (INM-10)
Research Program(s):
  1. 5232 - Computational Principles (POF4-523) (POF4-523)
  2. ACA - Advanced Computing Architectures (SO-092) (SO-092)
  3. Open-Access-Publikationskosten Forschungszentrum Jülich (OAPKFZJ) (491111487) (491111487)
  4. SDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005) (PF-JARA-SDS005)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-10
Institute Collections > IAS > IAS-6
Institute Collections > INM > INM-6
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2022-12-16, last modified 2024-03-13


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)