000916171 001__ 916171
000916171 005__ 20240313095006.0
000916171 037__ $$aFZJ-2022-05991
000916171 1001_ $$0P:(DE-Juel1)176593$$aMorales-Gregorio, Aitor$$b0$$eCorresponding author$$ufzj
000916171 1112_ $$aVisit Prof. Tatyana Sharpee$$cSalk Institute, San Diego$$wUSA
000916171 245__ $$aFeedback modulation of neural manifolds in macaque primary visual cortex$$f2022-11-18 - 
000916171 260__ $$c2022
000916171 3367_ $$033$$2EndNote$$aConference Paper
000916171 3367_ $$2DataCite$$aOther
000916171 3367_ $$2BibTeX$$aINPROCEEDINGS
000916171 3367_ $$2ORCID$$aLECTURE_SPEECH
000916171 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1673347187_23592$$xInvited
000916171 3367_ $$2DINI$$aOther
000916171 520__ $$aHigh-dimensional brain activity is in many cases organized into lower-dimensional neuralmanifolds [1,2]. Feedback from V4 to V1 is known to mediate visual attention [3] andcomputational work has shown that it can also rotate neural manifolds in acontext-dependent manner [4]. However, whether feedback signals can modulate neuralmanifolds in vivo remains to be ascertained.Here, we studied the neural manifolds in macaque (Macaca mulatta) visual cortex duringresting state [5] and found two distinct high-dimensional clusters in the activity. The clusterswere primarily correlated with behavioral state (eye closure) and had distinct dimensionality.Granger causality analysis revealed that feedback from V4 to V1 was significantly strongerduring the eyes-open periods. Finally, spiking neuron model simulations confirmed thatsignals mimicking V4-to-V1 feedback can modulate neural manifolds. Taken together, thedata analysis and simulations suggest that feedback signals actively modulate neuralmanifolds in the visual cortex of the macaque.References:[1] Stringer et al. (2020). Nature 571, 361-365. 10.1038/s41586-019-1346-5[2] Singh et al. (2008). Journal of Vision 8(8), 11. 10.1167/8.8.11[3] Poort et al. (2012). Neuron 75 (1), 143-156. 10.1016/j.neuron.2012.04.032[4] Naumann et al. (2022). eLife 11, 76096. 10.7554/eLife.76096[5] Chen*, Morales-Gregorio* et al. (2022). Scientific Data 9 (1), 77. 10.1038/s41597-022-01180-1
000916171 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000916171 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000916171 536__ $$0G:(GEPRIS)347572269$$aSPP 2041 347572269 - Integration von Multiskalen-Konnektivität und Gehirnarchitektur in einem supercomputergestützten Modell der menschlichen Großhirnrinde (347572269)$$c347572269$$x2
000916171 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x3
000916171 909CO $$ooai:juser.fz-juelich.de:916171$$pec_fundedresources$$pVDB$$popenaire
000916171 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176593$$aForschungszentrum Jülich$$b0$$kFZJ
000916171 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000916171 9141_ $$y2022
000916171 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000916171 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000916171 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000916171 980__ $$atalk
000916171 980__ $$aVDB
000916171 980__ $$aI:(DE-Juel1)INM-6-20090406
000916171 980__ $$aI:(DE-Juel1)IAS-6-20130828
000916171 980__ $$aI:(DE-Juel1)INM-10-20170113
000916171 980__ $$aUNRESTRICTED
000916171 981__ $$aI:(DE-Juel1)IAS-6-20130828