% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@INPROCEEDINGS{MoralesGregorio:916171,
      author       = {Morales-Gregorio, Aitor},
      title        = {{F}eedback modulation of neural manifolds in macaque
                      primary visual cortex},
      reportid     = {FZJ-2022-05991},
      year         = {2022},
      abstract     = {High-dimensional brain activity is in many cases organized
                      into lower-dimensional neuralmanifolds [1,2]. Feedback from
                      V4 to V1 is known to mediate visual attention [3]
                      andcomputational work has shown that it can also rotate
                      neural manifolds in acontext-dependent manner [4]. However,
                      whether feedback signals can modulate neuralmanifolds in
                      vivo remains to be ascertained.Here, we studied the neural
                      manifolds in macaque (Macaca mulatta) visual cortex
                      duringresting state [5] and found two distinct
                      high-dimensional clusters in the activity. The clusterswere
                      primarily correlated with behavioral state (eye closure) and
                      had distinct dimensionality.Granger causality analysis
                      revealed that feedback from V4 to V1 was significantly
                      strongerduring the eyes-open periods. Finally, spiking
                      neuron model simulations confirmed thatsignals mimicking
                      V4-to-V1 feedback can modulate neural manifolds. Taken
                      together, thedata analysis and simulations suggest that
                      feedback signals actively modulate neuralmanifolds in the
                      visual cortex of the macaque.References:[1] Stringer et al.
                      (2020). Nature 571, 361-365. 10.1038/s41586-019-1346-5[2]
                      Singh et al. (2008). Journal of Vision 8(8), 11.
                      10.1167/8.8.11[3] Poort et al. (2012). Neuron 75 (1),
                      143-156. 10.1016/j.neuron.2012.04.032[4] Naumann et al.
                      (2022). eLife 11, 76096. 10.7554/eLife.76096[5] Chen*,
                      Morales-Gregorio* et al. (2022). Scientific Data 9 (1), 77.
                      10.1038/s41597-022-01180-1},
      organization  = {Visit Prof. Tatyana Sharpee, Salk
                       Institute, San Diego (USA)},
      subtyp        = {Invited},
      cin          = {INM-6 / IAS-6 / INM-10},
      cid          = {I:(DE-Juel1)INM-6-20090406 / I:(DE-Juel1)IAS-6-20130828 /
                      I:(DE-Juel1)INM-10-20170113},
      pnm          = {5231 - Neuroscientific Foundations (POF4-523) / HBP SGA3 -
                      Human Brain Project Specific Grant Agreement 3 (945539) /
                      SPP 2041 347572269 - Integration von
                      Multiskalen-Konnektivität und Gehirnarchitektur in einem
                      supercomputergestützten Modell der menschlichen
                      Großhirnrinde (347572269) / GRK 2416 - GRK 2416:
                      MultiSenses-MultiScales: Neue Ansätze zur Aufklärung
                      neuronaler multisensorischer Integration (368482240)},
      pid          = {G:(DE-HGF)POF4-5231 / G:(EU-Grant)945539 /
                      G:(GEPRIS)347572269 / G:(GEPRIS)368482240},
      typ          = {PUB:(DE-HGF)31},
      url          = {https://juser.fz-juelich.de/record/916171},
}