000916360 001__ 916360
000916360 005__ 20240712113004.0
000916360 0247_ $$2doi$$a10.1021/acs.chemmater.2c01550
000916360 0247_ $$2ISSN$$a0897-4756
000916360 0247_ $$2ISSN$$a1520-5002
000916360 0247_ $$2Handle$$a2128/33297
000916360 0247_ $$2WOS$$aWOS:000883769200001
000916360 037__ $$aFZJ-2022-06161
000916360 082__ $$a540
000916360 1001_ $$00000-0003-4560-787X$$aKoch, Vanessa M.$$b0
000916360 245__ $$aSb 2 Se 3 Thin-Film Growth by Solution Atomic Layer Deposition
000916360 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2022
000916360 3367_ $$2DRIVER$$aarticle
000916360 3367_ $$2DataCite$$aOutput Types/Journal article
000916360 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671709411_15813
000916360 3367_ $$2BibTeX$$aARTICLE
000916360 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916360 3367_ $$00$$2EndNote$$aJournal Article
000916360 520__ $$aWe establish solution atomic layer deposition (sALD) for the controlled growth of pure Sb2Se3 thin films under mild conditions, namely, room temperature and atmospheric pressure. Upscaling this process yields Sb2Se3 thin films with high homogeneity over large-area (4″) substrates. Annealing of the initially amorphous material leads to highly crystalline and smooth Sb2Se3 thin films. Removing the constraints of thermal stability and sufficient volatility in sALD compared to traditional gas-phase ALD opens up a broad choice of precursors and allows us to examine a wide range of Se2– precursors, of which some exhibit facile synthetic routes and allow us to tune their reactivity for optimal experimental ease of use. Moreover, we demonstrate that the solvent used in sALD represents an additional, attractive tool to influence and tailor the reactivity at the liquid–solid interface between the precursors and the surface.
000916360 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000916360 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916360 7001_ $$0P:(DE-HGF)0$$aCharvot, Jaroslav$$b1
000916360 7001_ $$0P:(DE-HGF)0$$aCao, Yuanyuan$$b2
000916360 7001_ $$aHartmann, Claudia$$b3
000916360 7001_ $$00000-0001-5822-8399$$aWilks, Regan G.$$b4
000916360 7001_ $$aKundrata, Ivan$$b5
000916360 7001_ $$00000-0003-1680-1729$$aMínguez-Bacho, Ignacio$$b6
000916360 7001_ $$aGheshlaghi, Negar$$b7
000916360 7001_ $$aHoga, Felix$$b8
000916360 7001_ $$0P:(DE-Juel1)176894$$aStubhan, Tobias$$b9$$ufzj
000916360 7001_ $$0P:(DE-HGF)0$$aAlex, Wiebke$$b10
000916360 7001_ $$0P:(DE-HGF)0$$aPokorný, Daniel$$b11
000916360 7001_ $$0P:(DE-HGF)0$$aTopraksal, Ece$$b12
000916360 7001_ $$aSmith, Ana-Sunčana$$b13
000916360 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph$$b14
000916360 7001_ $$00000-0001-8581-0691$$aBär, Marcus$$b15
000916360 7001_ $$00000-0002-3960-1765$$aGuldi, Dirk M.$$b16
000916360 7001_ $$00000-0003-1587-2269$$aBarr, Maïssa K. S.$$b17
000916360 7001_ $$00000-0002-2832-6673$$aBureš, Filip$$b18$$eCorresponding author
000916360 7001_ $$00000-0001-6480-6212$$aBachmann, Julien$$b19$$eCorresponding author
000916360 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.2c01550$$gVol. 34, no. 21, p. 9392 - 9401$$n21$$p9392 - 9401$$tChemistry of materials$$v34$$x0897-4756$$y2022
000916360 8564_ $$uhttps://juser.fz-juelich.de/record/916360/files/acs.chemmater.2c01550.pdf$$yOpenAccess
000916360 909CO $$ooai:juser.fz-juelich.de:916360$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000916360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176894$$aForschungszentrum Jülich$$b9$$kFZJ
000916360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b14$$kFZJ
000916360 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000916360 9141_ $$y2022
000916360 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000916360 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
000916360 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000916360 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000916360 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000916360 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000916360 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
000916360 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bCHEM MATER : 2021$$d2022-11-12
000916360 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000916360 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916360 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000916360 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2021$$d2022-11-12
000916360 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000916360 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000916360 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000916360 920__ $$lyes
000916360 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000916360 9801_ $$aFullTexts
000916360 980__ $$ajournal
000916360 980__ $$aVDB
000916360 980__ $$aUNRESTRICTED
000916360 980__ $$aI:(DE-Juel1)IEK-11-20140314
000916360 981__ $$aI:(DE-Juel1)IET-2-20140314