Hauptseite > Publikationsdatenbank > Sb 2 Se 3 Thin-Film Growth by Solution Atomic Layer Deposition > print |
001 | 916360 | ||
005 | 20240712113004.0 | ||
024 | 7 | _ | |a 10.1021/acs.chemmater.2c01550 |2 doi |
024 | 7 | _ | |a 0897-4756 |2 ISSN |
024 | 7 | _ | |a 1520-5002 |2 ISSN |
024 | 7 | _ | |a 2128/33297 |2 Handle |
024 | 7 | _ | |a WOS:000883769200001 |2 WOS |
037 | _ | _ | |a FZJ-2022-06161 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Koch, Vanessa M. |0 0000-0003-4560-787X |b 0 |
245 | _ | _ | |a Sb 2 Se 3 Thin-Film Growth by Solution Atomic Layer Deposition |
260 | _ | _ | |a Washington, DC |c 2022 |b American Chemical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1671709411_15813 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We establish solution atomic layer deposition (sALD) for the controlled growth of pure Sb2Se3 thin films under mild conditions, namely, room temperature and atmospheric pressure. Upscaling this process yields Sb2Se3 thin films with high homogeneity over large-area (4″) substrates. Annealing of the initially amorphous material leads to highly crystalline and smooth Sb2Se3 thin films. Removing the constraints of thermal stability and sufficient volatility in sALD compared to traditional gas-phase ALD opens up a broad choice of precursors and allows us to examine a wide range of Se2– precursors, of which some exhibit facile synthetic routes and allow us to tune their reactivity for optimal experimental ease of use. Moreover, we demonstrate that the solvent used in sALD represents an additional, attractive tool to influence and tailor the reactivity at the liquid–solid interface between the precursors and the surface. |
536 | _ | _ | |a 1212 - Materials and Interfaces (POF4-121) |0 G:(DE-HGF)POF4-1212 |c POF4-121 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Charvot, Jaroslav |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Cao, Yuanyuan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Hartmann, Claudia |b 3 |
700 | 1 | _ | |a Wilks, Regan G. |0 0000-0001-5822-8399 |b 4 |
700 | 1 | _ | |a Kundrata, Ivan |b 5 |
700 | 1 | _ | |a Mínguez-Bacho, Ignacio |0 0000-0003-1680-1729 |b 6 |
700 | 1 | _ | |a Gheshlaghi, Negar |b 7 |
700 | 1 | _ | |a Hoga, Felix |b 8 |
700 | 1 | _ | |a Stubhan, Tobias |0 P:(DE-Juel1)176894 |b 9 |u fzj |
700 | 1 | _ | |a Alex, Wiebke |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Pokorný, Daniel |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Topraksal, Ece |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Smith, Ana-Sunčana |b 13 |
700 | 1 | _ | |a Brabec, Christoph |0 P:(DE-Juel1)176427 |b 14 |
700 | 1 | _ | |a Bär, Marcus |0 0000-0001-8581-0691 |b 15 |
700 | 1 | _ | |a Guldi, Dirk M. |0 0000-0002-3960-1765 |b 16 |
700 | 1 | _ | |a Barr, Maïssa K. S. |0 0000-0003-1587-2269 |b 17 |
700 | 1 | _ | |a Bureš, Filip |0 0000-0002-2832-6673 |b 18 |e Corresponding author |
700 | 1 | _ | |a Bachmann, Julien |0 0000-0001-6480-6212 |b 19 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.chemmater.2c01550 |g Vol. 34, no. 21, p. 9392 - 9401 |0 PERI:(DE-600)1500399-1 |n 21 |p 9392 - 9401 |t Chemistry of materials |v 34 |y 2022 |x 0897-4756 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/916360/files/acs.chemmater.2c01550.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:916360 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)176894 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)176427 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1212 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-12 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-12 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-12 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b CHEM MATER : 2021 |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-12 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-12 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEM MATER : 2021 |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-12 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-12 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-12 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-11-20140314 |k IEK-11 |l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-11-20140314 |
981 | _ | _ | |a I:(DE-Juel1)IET-2-20140314 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|