001     916360
005     20240712113004.0
024 7 _ |a 10.1021/acs.chemmater.2c01550
|2 doi
024 7 _ |a 0897-4756
|2 ISSN
024 7 _ |a 1520-5002
|2 ISSN
024 7 _ |a 2128/33297
|2 Handle
024 7 _ |a WOS:000883769200001
|2 WOS
037 _ _ |a FZJ-2022-06161
082 _ _ |a 540
100 1 _ |a Koch, Vanessa M.
|0 0000-0003-4560-787X
|b 0
245 _ _ |a Sb 2 Se 3 Thin-Film Growth by Solution Atomic Layer Deposition
260 _ _ |a Washington, DC
|c 2022
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671709411_15813
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We establish solution atomic layer deposition (sALD) for the controlled growth of pure Sb2Se3 thin films under mild conditions, namely, room temperature and atmospheric pressure. Upscaling this process yields Sb2Se3 thin films with high homogeneity over large-area (4″) substrates. Annealing of the initially amorphous material leads to highly crystalline and smooth Sb2Se3 thin films. Removing the constraints of thermal stability and sufficient volatility in sALD compared to traditional gas-phase ALD opens up a broad choice of precursors and allows us to examine a wide range of Se2– precursors, of which some exhibit facile synthetic routes and allow us to tune their reactivity for optimal experimental ease of use. Moreover, we demonstrate that the solvent used in sALD represents an additional, attractive tool to influence and tailor the reactivity at the liquid–solid interface between the precursors and the surface.
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Charvot, Jaroslav
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cao, Yuanyuan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hartmann, Claudia
|b 3
700 1 _ |a Wilks, Regan G.
|0 0000-0001-5822-8399
|b 4
700 1 _ |a Kundrata, Ivan
|b 5
700 1 _ |a Mínguez-Bacho, Ignacio
|0 0000-0003-1680-1729
|b 6
700 1 _ |a Gheshlaghi, Negar
|b 7
700 1 _ |a Hoga, Felix
|b 8
700 1 _ |a Stubhan, Tobias
|0 P:(DE-Juel1)176894
|b 9
|u fzj
700 1 _ |a Alex, Wiebke
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Pokorný, Daniel
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Topraksal, Ece
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Smith, Ana-Sunčana
|b 13
700 1 _ |a Brabec, Christoph
|0 P:(DE-Juel1)176427
|b 14
700 1 _ |a Bär, Marcus
|0 0000-0001-8581-0691
|b 15
700 1 _ |a Guldi, Dirk M.
|0 0000-0002-3960-1765
|b 16
700 1 _ |a Barr, Maïssa K. S.
|0 0000-0003-1587-2269
|b 17
700 1 _ |a Bureš, Filip
|0 0000-0002-2832-6673
|b 18
|e Corresponding author
700 1 _ |a Bachmann, Julien
|0 0000-0001-6480-6212
|b 19
|e Corresponding author
773 _ _ |a 10.1021/acs.chemmater.2c01550
|g Vol. 34, no. 21, p. 9392 - 9401
|0 PERI:(DE-600)1500399-1
|n 21
|p 9392 - 9401
|t Chemistry of materials
|v 34
|y 2022
|x 0897-4756
856 4 _ |u https://juser.fz-juelich.de/record/916360/files/acs.chemmater.2c01550.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:916360
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)176894
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b CHEM MATER : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21