000916663 001__ 916663
000916663 005__ 20230224084252.0
000916663 0247_ $$2doi$$a10.1002/cctc.202200982
000916663 0247_ $$2ISSN$$a1867-3880
000916663 0247_ $$2ISSN$$a1867-3899
000916663 0247_ $$2Handle$$a2128/33563
000916663 0247_ $$2WOS$$aWOS:000879602500001
000916663 037__ $$aFZJ-2023-00015
000916663 041__ $$aEnglish
000916663 082__ $$a540
000916663 1001_ $$00000-0002-2403-9976$$aWang, Yehong$$b0$$eCorresponding author
000916663 245__ $$aRevealing the Catalytic Role of Sn Dopant in CO 2 ‐Oxidative Dehydrogenation of Propane over Pt/Sn‐CeO 2 Catalyst
000916663 260__ $$aWeinheim$$bWiley-VCH$$c2022
000916663 3367_ $$2DRIVER$$aarticle
000916663 3367_ $$2DataCite$$aOutput Types/Journal article
000916663 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673603165_14308
000916663 3367_ $$2BibTeX$$aARTICLE
000916663 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916663 3367_ $$00$$2EndNote$$aJournal Article
000916663 520__ $$aCO2-oxidative dehydrogenation of propane (CO2-ODHP) provides a promising route for propylene production. Sufficient propane conversion and propylene selectivity remain a great challenge due to the difficulty in activating inert propane and CO2 simultaneously. Herein, a Sn doped CeO2 supported Pt (Pt/Sn-CeO2) catalyst in CO2-ODHP reaction is reported. Sn doping appears to kill two birds with one stone for propane and CO2 activation. On the one side, it increases the electron density of Pt species via PtSn alloy formation, promoting propane adsorption and C−H bond cleavage. On the other side, it enhances oxygen vacancy concentrations of CeO2 support, facilitating CO2 dissociation. A higher propylene selectivity (63.9 % vs 22.3 %) was obtained on 0.1 wt % Pt/1.0 wt % Sn-CeO2 than that on 0.1 wt % Pt/CeO2 with a comparable propane conversion (15.1 % vs 14.3 %) at 550 °C after 240 min on stream. This work provides a reference for designing efficient catalysts.
000916663 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000916663 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916663 7001_ $$0P:(DE-HGF)0$$aWang, Jiapei$$b1
000916663 7001_ $$0P:(DE-HGF)0$$aZhang, Yuda$$b2
000916663 7001_ $$0P:(DE-HGF)0$$aGuo, Qiang$$b3
000916663 7001_ $$0P:(DE-HGF)0$$aAn, Jie$$b4
000916663 7001_ $$0P:(DE-HGF)0$$aLiang, Yafei$$b5
000916663 7001_ $$0P:(DE-HGF)0$$aWang, Yanan$$b6
000916663 7001_ $$0P:(DE-Juel1)180314$$aCao, Pengfei$$b7
000916663 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b8
000916663 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b9
000916663 7001_ $$0P:(DE-HGF)0$$aZhu, Xiangxue$$b10
000916663 7001_ $$0P:(DE-HGF)0$$aLi, Xiujie$$b11$$eCorresponding author
000916663 7001_ $$0P:(DE-HGF)0$$aWang, Feng$$b12
000916663 773__ $$0PERI:(DE-600)2501161-3$$a10.1002/cctc.202200982$$gVol. 14, no. 23$$n23$$p1-12$$tChemCatChem$$v14$$x1867-3880$$y2022
000916663 8564_ $$uhttps://juser.fz-juelich.de/record/916663/files/ChemCatChem%20-%202022%20-%20Wang%20-%20Revealing%20the%20Catalytic%20Role%20of%20Sn%20Dopant%20in%20CO2%E2%80%90Oxidative%20Dehydrogenation%20of%20Propane%20over%20Pt.pdf
000916663 8564_ $$uhttps://juser.fz-juelich.de/record/916663/files/Revealing%20the%20Catalytic%20Role%202022%20Kopie.pdf$$yPublished on 2022-09-11. Available in OpenAccess from 2023-09-11.
000916663 909CO $$ooai:juser.fz-juelich.de:916663$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000916663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180314$$aForschungszentrum Jülich$$b7$$kFZJ
000916663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b8$$kFZJ
000916663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b9$$kFZJ
000916663 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000916663 9141_ $$y2022
000916663 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000916663 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-18
000916663 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-18
000916663 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000916663 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-18
000916663 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMCATCHEM : 2021$$d2022-11-18
000916663 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-18$$wger
000916663 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000916663 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-18
000916663 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-18
000916663 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMCATCHEM : 2021$$d2022-11-18
000916663 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000916663 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000916663 920__ $$lyes
000916663 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000916663 980__ $$ajournal
000916663 980__ $$aVDB
000916663 980__ $$aUNRESTRICTED
000916663 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000916663 9801_ $$aFullTexts