Journal Article FZJ-2023-00015

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Revealing the Catalytic Role of Sn Dopant in CO 2 ‐Oxidative Dehydrogenation of Propane over Pt/Sn‐CeO 2 Catalyst

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2022
Wiley-VCH Weinheim

ChemCatChem 14(23), 1-12 () [10.1002/cctc.202200982]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: CO2-oxidative dehydrogenation of propane (CO2-ODHP) provides a promising route for propylene production. Sufficient propane conversion and propylene selectivity remain a great challenge due to the difficulty in activating inert propane and CO2 simultaneously. Herein, a Sn doped CeO2 supported Pt (Pt/Sn-CeO2) catalyst in CO2-ODHP reaction is reported. Sn doping appears to kill two birds with one stone for propane and CO2 activation. On the one side, it increases the electron density of Pt species via PtSn alloy formation, promoting propane adsorption and C−H bond cleavage. On the other side, it enhances oxygen vacancy concentrations of CeO2 support, facilitating CO2 dissociation. A higher propylene selectivity (63.9 % vs 22.3 %) was obtained on 0.1 wt % Pt/1.0 wt % Sn-CeO2 than that on 0.1 wt % Pt/CeO2 with a comparable propane conversion (15.1 % vs 14.3 %) at 550 °C after 240 min on stream. This work provides a reference for designing efficient catalysts.

Classification:

Contributing Institute(s):
  1. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) (POF4-535)

Appears in the scientific report 2022
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2023-01-02, last modified 2023-02-24


Published on 2022-09-11. Available in OpenAccess from 2023-09-11.:
Download fulltext PDF
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)