Home > Publications database > Revealing the Catalytic Role of Sn Dopant in CO 2 ‐Oxidative Dehydrogenation of Propane over Pt/Sn‐CeO 2 Catalyst > print |
001 | 916663 | ||
005 | 20230224084252.0 | ||
024 | 7 | _ | |a 10.1002/cctc.202200982 |2 doi |
024 | 7 | _ | |a 1867-3880 |2 ISSN |
024 | 7 | _ | |a 1867-3899 |2 ISSN |
024 | 7 | _ | |a 2128/33563 |2 Handle |
024 | 7 | _ | |a WOS:000879602500001 |2 WOS |
037 | _ | _ | |a FZJ-2023-00015 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Wang, Yehong |0 0000-0002-2403-9976 |b 0 |e Corresponding author |
245 | _ | _ | |a Revealing the Catalytic Role of Sn Dopant in CO 2 ‐Oxidative Dehydrogenation of Propane over Pt/Sn‐CeO 2 Catalyst |
260 | _ | _ | |a Weinheim |c 2022 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1673603165_14308 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a CO2-oxidative dehydrogenation of propane (CO2-ODHP) provides a promising route for propylene production. Sufficient propane conversion and propylene selectivity remain a great challenge due to the difficulty in activating inert propane and CO2 simultaneously. Herein, a Sn doped CeO2 supported Pt (Pt/Sn-CeO2) catalyst in CO2-ODHP reaction is reported. Sn doping appears to kill two birds with one stone for propane and CO2 activation. On the one side, it increases the electron density of Pt species via PtSn alloy formation, promoting propane adsorption and C−H bond cleavage. On the other side, it enhances oxygen vacancy concentrations of CeO2 support, facilitating CO2 dissociation. A higher propylene selectivity (63.9 % vs 22.3 %) was obtained on 0.1 wt % Pt/1.0 wt % Sn-CeO2 than that on 0.1 wt % Pt/CeO2 with a comparable propane conversion (15.1 % vs 14.3 %) at 550 °C after 240 min on stream. This work provides a reference for designing efficient catalysts. |
536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Wang, Jiapei |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Zhang, Yuda |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Guo, Qiang |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a An, Jie |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Liang, Yafei |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Wang, Yanan |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Cao, Pengfei |0 P:(DE-Juel1)180314 |b 7 |
700 | 1 | _ | |a Heggen, Marc |0 P:(DE-Juel1)130695 |b 8 |
700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 9 |
700 | 1 | _ | |a Zhu, Xiangxue |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Li, Xiujie |0 P:(DE-HGF)0 |b 11 |e Corresponding author |
700 | 1 | _ | |a Wang, Feng |0 P:(DE-HGF)0 |b 12 |
773 | _ | _ | |a 10.1002/cctc.202200982 |g Vol. 14, no. 23 |0 PERI:(DE-600)2501161-3 |n 23 |p 1-12 |t ChemCatChem |v 14 |y 2022 |x 1867-3880 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/916663/files/ChemCatChem%20-%202022%20-%20Wang%20-%20Revealing%20the%20Catalytic%20Role%20of%20Sn%20Dopant%20in%20CO2%E2%80%90Oxidative%20Dehydrogenation%20of%20Propane%20over%20Pt.pdf |
856 | 4 | _ | |y Published on 2022-09-11. Available in OpenAccess from 2023-09-11. |u https://juser.fz-juelich.de/record/916663/files/Revealing%20the%20Catalytic%20Role%202022%20Kopie.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:916663 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)180314 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130695 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)144121 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-18 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-18 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CHEMCATCHEM : 2021 |d 2022-11-18 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2022-11-18 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-18 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-18 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEMCATCHEM : 2021 |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-18 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|