001     916663
005     20230224084252.0
024 7 _ |a 10.1002/cctc.202200982
|2 doi
024 7 _ |a 1867-3880
|2 ISSN
024 7 _ |a 1867-3899
|2 ISSN
024 7 _ |a 2128/33563
|2 Handle
024 7 _ |a WOS:000879602500001
|2 WOS
037 _ _ |a FZJ-2023-00015
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Wang, Yehong
|0 0000-0002-2403-9976
|b 0
|e Corresponding author
245 _ _ |a Revealing the Catalytic Role of Sn Dopant in CO 2 ‐Oxidative Dehydrogenation of Propane over Pt/Sn‐CeO 2 Catalyst
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673603165_14308
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a CO2-oxidative dehydrogenation of propane (CO2-ODHP) provides a promising route for propylene production. Sufficient propane conversion and propylene selectivity remain a great challenge due to the difficulty in activating inert propane and CO2 simultaneously. Herein, a Sn doped CeO2 supported Pt (Pt/Sn-CeO2) catalyst in CO2-ODHP reaction is reported. Sn doping appears to kill two birds with one stone for propane and CO2 activation. On the one side, it increases the electron density of Pt species via PtSn alloy formation, promoting propane adsorption and C−H bond cleavage. On the other side, it enhances oxygen vacancy concentrations of CeO2 support, facilitating CO2 dissociation. A higher propylene selectivity (63.9 % vs 22.3 %) was obtained on 0.1 wt % Pt/1.0 wt % Sn-CeO2 than that on 0.1 wt % Pt/CeO2 with a comparable propane conversion (15.1 % vs 14.3 %) at 550 °C after 240 min on stream. This work provides a reference for designing efficient catalysts.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wang, Jiapei
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhang, Yuda
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Guo, Qiang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a An, Jie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Liang, Yafei
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wang, Yanan
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Cao, Pengfei
|0 P:(DE-Juel1)180314
|b 7
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 8
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 9
700 1 _ |a Zhu, Xiangxue
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Li, Xiujie
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
700 1 _ |a Wang, Feng
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1002/cctc.202200982
|g Vol. 14, no. 23
|0 PERI:(DE-600)2501161-3
|n 23
|p 1-12
|t ChemCatChem
|v 14
|y 2022
|x 1867-3880
856 4 _ |u https://juser.fz-juelich.de/record/916663/files/ChemCatChem%20-%202022%20-%20Wang%20-%20Revealing%20the%20Catalytic%20Role%20of%20Sn%20Dopant%20in%20CO2%E2%80%90Oxidative%20Dehydrogenation%20of%20Propane%20over%20Pt.pdf
856 4 _ |y Published on 2022-09-11. Available in OpenAccess from 2023-09-11.
|u https://juser.fz-juelich.de/record/916663/files/Revealing%20the%20Catalytic%20Role%202022%20Kopie.pdf
909 C O |o oai:juser.fz-juelich.de:916663
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)180314
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-18
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEMCATCHEM : 2021
|d 2022-11-18
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMCATCHEM : 2021
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21