000917180 001__ 917180
000917180 005__ 20240712113146.0
000917180 0247_ $$2doi$$a10.1088/2053-1591/acaef3
000917180 0247_ $$2Handle$$a2128/33590
000917180 0247_ $$2WOS$$aWOS:000909418700001
000917180 037__ $$aFZJ-2023-00412
000917180 082__ $$a620
000917180 1001_ $$0P:(DE-HGF)0$$aReshetenko, Tatyana$$b0
000917180 245__ $$aOxygen transport in the low–Pt catalyst layer of a PEM fuel cell: Impedance spectroscopy study
000917180 260__ $$aBristol$$bIOP Publ.$$c2023
000917180 3367_ $$2DRIVER$$aarticle
000917180 3367_ $$2DataCite$$aOutput Types/Journal article
000917180 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707995159_1068
000917180 3367_ $$2BibTeX$$aARTICLE
000917180 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917180 3367_ $$00$$2EndNote$$aJournal Article
000917180 520__ $$aA model for PEM fuel cell impedance taking into account the pore size distribution (PSD) in the cathode catalyst layer is developed. Experimental PSD is approximated by pores of three sizes (small, medium and large) and in each kind of pores, the oxygen diffusion coefficient is allowed to have a separate value. The model is fitted to experimental impedance spectra of a low–Pt PEM fuel cell. The oxygen diffusivities of small and medium pores exhibit rapid growth with the cell current density, while in large pores, this parameter remains nearly constant. We show that oxygen reduction occurs mainly in the small and medium pores, leaving the large pores for mass transport only. This effect explains the discrepancy between small effective oxygen diffusivity of PEMFC catalyst layer measured in situ in operating cells by limiting current method, and much larger value of this parameter determined from ex situ experiments using Loschmidt cell.
000917180 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000917180 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917180 7001_ $$0P:(DE-Juel1)129878$$aKulikovsky, Andrei$$b1$$eCorresponding author
000917180 773__ $$0PERI:(DE-600)2760382-9$$a10.1088/2053-1591/acaef3$$gVol. 10, no. 1, p. 015501 -$$n1$$p015501 -$$tMaterials Research Express$$v10$$x2053-1591$$y2023
000917180 8564_ $$uhttps://juser.fz-juelich.de/record/917180/files/Reshetenko_2023_Mater._Res._Express_10_015501.pdf$$yOpenAccess
000917180 8767_ $$d2023-01-24$$eAPC$$jPublish and Read
000917180 909CO $$ooai:juser.fz-juelich.de:917180$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000917180 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129878$$aForschungszentrum Jülich$$b1$$kFZJ
000917180 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000917180 9141_ $$y2023
000917180 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000917180 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000917180 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000917180 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000917180 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-16
000917180 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000917180 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-16
000917180 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-16
000917180 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917180 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-16
000917180 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:01:41Z
000917180 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:01:41Z
000917180 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:01:41Z
000917180 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-26$$wger
000917180 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER RES EXPRESS : 2022$$d2023-10-26
000917180 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000917180 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000917180 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000917180 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000917180 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
000917180 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
000917180 920__ $$lyes
000917180 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000917180 9801_ $$aAPC
000917180 9801_ $$aFullTexts
000917180 980__ $$ajournal
000917180 980__ $$aVDB
000917180 980__ $$aI:(DE-Juel1)IEK-13-20190226
000917180 980__ $$aAPC
000917180 980__ $$aUNRESTRICTED
000917180 981__ $$aI:(DE-Juel1)IET-3-20190226