000917399 001__ 917399
000917399 005__ 20230328061230.0
000917399 0247_ $$2doi$$a10.1016/j.cub.2022.07.070
000917399 0247_ $$2ISSN$$a0960-9822
000917399 0247_ $$2ISSN$$a1879-0445
000917399 0247_ $$2pmid$$a36084646
000917399 0247_ $$2WOS$$aWOS:000898422800011
000917399 037__ $$aFZJ-2023-00613
000917399 082__ $$a570
000917399 1001_ $$0P:(DE-HGF)0$$avon Eugen, Kaya$$b0
000917399 245__ $$aAvian neurons consume three times less glucose than mammalian neurons
000917399 260__ $$aLondon$$bCurrent Biology Ltd.$$c2022
000917399 3367_ $$2DRIVER$$aarticle
000917399 3367_ $$2DataCite$$aOutput Types/Journal article
000917399 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1679976705_22497
000917399 3367_ $$2BibTeX$$aARTICLE
000917399 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917399 3367_ $$00$$2EndNote$$aJournal Article
000917399 520__ $$aBrains are among the most energetically costly tissues in the mammalian body.1 This is predominantly caused by expensive neurons with high glucose demands.2 Across mammals, the neuronal energy budget appears to be fixed, possibly posing an evolutionary constraint on brain growth.3-6 Compared to similarly sized mammals, birds have higher numbers of neurons, and this advantage conceivably contributes to their cognitive prowess.7 We set out to determine the neuronal energy budget of birds to elucidate how they can metabolically support such high numbers of neurons. We estimated glucose metabolism using positron emission tomography (PET) and 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) as the radiotracer in awake and anesthetized pigeons. Combined with kinetic modeling, this is the gold standard to quantify cerebral metabolic rate of glucose consumption (CMRglc).8 We found that neural tissue in the pigeon consumes 27.29 ± 1.57 μmol glucose per 100 g per min in an awake state, which translates into a surprisingly low neuronal energy budget of 1.86 × 10-9 ± 0.2 × 10-9 μmol glucose per neuron per minute. This is approximately 3 times lower than the rate in the average mammalian neuron.3 The remarkably low neuronal energy budget explains how pigeons, and possibly other avian species, can support such high numbers of neurons without associated metabolic costs or compromising neuronal signaling. The advantage in neuronal processing of information at a higher efficiency possibly emerged during the distinct evolution of the avian brain.Keywords: PET; bird; brain; energy consumption; evolution; metabolism.
000917399 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000917399 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917399 7001_ $$0P:(DE-Juel1)180330$$aEndepols, Heike$$b1
000917399 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b2
000917399 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b3
000917399 7001_ $$0P:(DE-HGF)0$$aGüntürkün, Onur$$b4
000917399 7001_ $$0P:(DE-HGF)0$$aBackes, Heiko$$b5
000917399 7001_ $$0P:(DE-HGF)0$$aStröckens, Felix$$b6$$eCorresponding author
000917399 773__ $$0PERI:(DE-600)2019214-9$$a10.1016/j.cub.2022.07.070$$gVol. 32, no. 19, p. 4306 - 4313.e4$$n19$$p4306 - 4313.e4$$tCurrent biology$$v32$$x0960-9822$$y2022
000917399 8564_ $$uhttps://juser.fz-juelich.de/record/917399/files/VonEugen_2022_avianbrainenergyconsumption.pdf
000917399 909CO $$ooai:juser.fz-juelich.de:917399$$pVDB
000917399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180330$$aForschungszentrum Jülich$$b1$$kFZJ
000917399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b2$$kFZJ
000917399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b3$$kFZJ
000917399 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000917399 9141_ $$y2022
000917399 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-22$$wger
000917399 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCURR BIOL : 2021$$d2022-11-22
000917399 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000917399 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000917399 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-22
000917399 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-22
000917399 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000917399 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-22
000917399 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
000917399 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000917399 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-22
000917399 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-22
000917399 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-22
000917399 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
000917399 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bCURR BIOL : 2021$$d2022-11-22
000917399 920__ $$lyes
000917399 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000917399 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x1
000917399 980__ $$ajournal
000917399 980__ $$aVDB
000917399 980__ $$aI:(DE-Juel1)INM-2-20090406
000917399 980__ $$aI:(DE-Juel1)INM-5-20090406
000917399 980__ $$aUNRESTRICTED