Journal Article FZJ-2023-00613

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Avian neurons consume three times less glucose than mammalian neurons

 ;  ;  ;  ;  ;  ;

2022
Current Biology Ltd. London

Current biology 32(19), 4306 - 4313.e4 () [10.1016/j.cub.2022.07.070]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Brains are among the most energetically costly tissues in the mammalian body.1 This is predominantly caused by expensive neurons with high glucose demands.2 Across mammals, the neuronal energy budget appears to be fixed, possibly posing an evolutionary constraint on brain growth.3-6 Compared to similarly sized mammals, birds have higher numbers of neurons, and this advantage conceivably contributes to their cognitive prowess.7 We set out to determine the neuronal energy budget of birds to elucidate how they can metabolically support such high numbers of neurons. We estimated glucose metabolism using positron emission tomography (PET) and 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) as the radiotracer in awake and anesthetized pigeons. Combined with kinetic modeling, this is the gold standard to quantify cerebral metabolic rate of glucose consumption (CMRglc).8 We found that neural tissue in the pigeon consumes 27.29 ± 1.57 μmol glucose per 100 g per min in an awake state, which translates into a surprisingly low neuronal energy budget of 1.86 × 10-9 ± 0.2 × 10-9 μmol glucose per neuron per minute. This is approximately 3 times lower than the rate in the average mammalian neuron.3 The remarkably low neuronal energy budget explains how pigeons, and possibly other avian species, can support such high numbers of neurons without associated metabolic costs or compromising neuronal signaling. The advantage in neuronal processing of information at a higher efficiency possibly emerged during the distinct evolution of the avian brain.Keywords: PET; bird; brain; energy consumption; evolution; metabolism.

Classification:

Contributing Institute(s):
  1. Molekulare Organisation des Gehirns (INM-2)
  2. Nuklearchemie (INM-5)
Research Program(s):
  1. 5253 - Neuroimaging (POF4-525) (POF4-525)

Appears in the scientific report 2022
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 10 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-2
Institute Collections > INM > INM-5
Workflow collections > Public records
Publications database

 Record created 2023-01-13, last modified 2023-03-28


Fulltext:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)