000917504 001__ 917504
000917504 005__ 20240712113144.0
000917504 0247_ $$2doi$$a10.1021/jacsau.2c00650
000917504 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-00717
000917504 0247_ $$2pmid$$a36873696
000917504 0247_ $$2WOS$$aWOS:000923981500001
000917504 037__ $$aFZJ-2023-00717
000917504 082__ $$a540
000917504 1001_ $$0P:(DE-Juel1)192568$$aHuang, Jun$$b0$$eCorresponding author$$ufzj
000917504 245__ $$aZooming into the Inner Helmholtz Plane of Pt(111)-Aqueous Solution Interfaces: Chemisorbed Water and Partially-Charged Ions
000917504 260__ $$aWashington, DC$$bACS Publications$$c2023
000917504 3367_ $$2DRIVER$$aarticle
000917504 3367_ $$2DataCite$$aOutput Types/Journal article
000917504 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707994830_1296
000917504 3367_ $$2BibTeX$$aARTICLE
000917504 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917504 3367_ $$00$$2EndNote$$aJournal Article
000917504 520__ $$aThe double layer on transition metals, i.e., platinum, features chemical metal–solvent interactions and partially charged chemisorbed ions. Chemically adsorbed solvent molecules and ions are situated closer to the metal surface than electrostatically adsorbed ions. This effect is described tersely by the concept of an inner Helmholtz plane (IHP) in classical double layer models. The IHP concept is extended here in three aspects. First, a refined statistical treatment of solvent (water) molecules considers a continuous spectrum of orientational polarizable states, rather than a few representative states, and non-electrostatic, chemical metal–solvent interactions. Second, chemisorbed ions are partially charged, rather than being electroneutral or having integral charges as in the solution bulk, with the coverage determined by a generalized, energetically distributed adsorption isotherm. The surface dipole moment induced by partially charged, chemisorbed ions is considered. Third, considering different locations and properties of chemisorbed ions and solvent molecules, the IHP is divided into two planes, namely, an AIP (adsorbed ion plane) and ASP (adsorbed solvent plane). The model is used to study how the partially charged AIP and polarizable ASP lead to intriguing double-layer capacitance curves that are different from what the conventional Gouy–Chapman–Stern model describes. The model provides an alternative interpretation for recent capacitance data of Pt(111)–aqueous solution interfaces calculated from cyclic voltammetry. This revisit brings forth questions regarding the existence of a pure double-layer region at realistic Pt(111). The implications, limitations, and possible experimental confirmation of the present model are discussed.
000917504 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000917504 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917504 773__ $$0PERI:(DE-600)3049543-X$$a10.1021/jacsau.2c00650$$gp. jacsau.2c00650$$n2$$p550-564$$tJACS Au$$v3$$x2691-3704$$y2023
000917504 8564_ $$uhttps://juser.fz-juelich.de/record/917504/files/Invoice_APC600382113.pdf
000917504 8564_ $$uhttps://juser.fz-juelich.de/record/917504/files/Huang_Zooming%20into%20the%20Inner.pdf$$yOpenAccess
000917504 8564_ $$uhttps://juser.fz-juelich.de/record/917504/files/jacsau.2c00650.pdf$$yOpenAccess
000917504 8767_ $$8APC600382113$$92023-01-14$$a1200187992$$d2023-01-18$$eAPC$$jZahlung erfolgt$$zUSD 4000,-
000917504 909CO $$ooai:juser.fz-juelich.de:917504$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000917504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192568$$aForschungszentrum Jülich$$b0$$kFZJ
000917504 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000917504 9141_ $$y2023
000917504 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000917504 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000917504 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000917504 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000917504 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917504 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000917504 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJACS AU : 2022$$d2023-08-25
000917504 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
000917504 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
000917504 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-25
000917504 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-18T10:11:29Z
000917504 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-18T10:11:29Z
000917504 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-18T10:11:29Z
000917504 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
000917504 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-08-25
000917504 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
000917504 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJACS AU : 2022$$d2023-08-25
000917504 920__ $$lyes
000917504 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000917504 9801_ $$aAPC
000917504 9801_ $$aFullTexts
000917504 980__ $$ajournal
000917504 980__ $$aVDB
000917504 980__ $$aI:(DE-Juel1)IEK-13-20190226
000917504 980__ $$aAPC
000917504 980__ $$aUNRESTRICTED
000917504 981__ $$aI:(DE-Juel1)IET-3-20190226