001     917508
005     20230929112506.0
024 7 _ |a 10.1002/cite.202200178
|2 doi
024 7 _ |a 0009-286X
|2 ISSN
024 7 _ |a 1522-2640
|2 ISSN
024 7 _ |a 2128/34204
|2 Handle
024 7 _ |a WOS:000914001400001
|2 WOS
037 _ _ |a FZJ-2023-00721
082 _ _ |a 660
100 1 _ |a Sehl, Torsten
|0 P:(DE-Juel1)174185
|b 0
|e Corresponding author
245 _ _ |a Enzymatic (2 R ,4 R )‐Pentanediol Synthesis – “Putting a Bottle on the Table”
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1683530991_21000
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a (2R,4R)-Pentanediol is an interesting precursor for the synthesis of chiral ligands. A ketoreductase (KRED) was employed for the asymmetric reduction of acetylacetone to this diol. Biocatalysis often suffers from low concentrations of hydrophobic substrates and low stability of the enzyme in unconventional media. Here, we present an engineered KRED variant applicable in a neat substrate system, including upscaling to the multi-liter scale and downstream processing (DSP). Our engineered KRED applied in a neat substrate system is a powerful technique for the synthesis of chiral diols yielding product concentrations of 208 g L−1.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Seibt, Lisa
|0 P:(DE-Juel1)188344
|b 1
|u fzj
700 1 _ |a Kappauf, Katrin
|0 P:(DE-Juel1)179370
|b 2
700 1 _ |a Ergezinger, Pia
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Spöring, Jan-Dirk
|0 P:(DE-Juel1)178052
|b 4
700 1 _ |a Mielke, Kristina
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Doeker, Moritz
|b 6
700 1 _ |a Verma, Neha
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Bocola, Marco
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Daußmann, Thomas
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Chen, Haibin
|0 0000-0003-2589-7347
|b 10
700 1 _ |a Shi, Shumin
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Jupke, Andreas
|0 P:(DE-Juel1)194474
|b 12
700 1 _ |a Rother, Dörte
|0 P:(DE-Juel1)144643
|b 13
|e Corresponding author
773 _ _ |a 10.1002/cite.202200178
|g p. cite.202200178
|0 PERI:(DE-600)2035041-7
|n 4
|p 557-564
|t Chemie - Ingenieur - Technik
|v 95
|y 2023
|x 0009-286X
856 4 _ |u https://juser.fz-juelich.de/record/917508/files/Invoice_5803476.pdf
856 4 _ |u https://juser.fz-juelich.de/record/917508/files/Chemie%20Ingenieur%20Technik%20-%202023%20-%20Sehl%20-%20Enzymatic%202R%204R%20%E2%80%90Pentanediol%20Synthesis%20Putting%20a%20Bottle%20on%20the%20Table.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:917508
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174185
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188344
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)178052
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)194474
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)144643
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-08
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-26
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM-ING-TECH : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-26
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21