Preprint FZJ-2023-00731

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
ObiWan-Microbi: OMERO-based integrated workflow for annotating microbes in the cloud

 ;  ;  ;  ;  ;  ;  ;

2022

bioRxiv 4 pp. () [10.1101/2022.08.01.502297]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Reliable deep learning segmentation for microfluidic live-cell imaging requires comprehensive ground truth data. ObiWan-Microbi is a microservice platform combining the strength of state-of-the-art technologies into a unique integrated workflow for data management and efficient ground truth generation for instance segmentation, empowering collaborative semi-automated image annotation in the cloud.


Contributing Institute(s):
  1. Biotechnologie (IBG-1)
  2. Datenanalyse und Maschinenlernen (IAS-8)
Research Program(s):
  1. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)
  2. 2171 - Biological and environmental resources for sustainable use (POF4-217) (POF4-217)

Appears in the scientific report 2022
Database coverage:
Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > IAS > IAS-8
Document types > Reports > Preprints
Institute Collections > IBG > IBG-1
Workflow collections > Public records
JuOSC (Juelich Open Science Collection)
Publications database
Open Access

 Record created 2023-01-16, last modified 2023-07-13


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)