000917540 001__ 917540
000917540 005__ 20240712112926.0
000917540 0247_ $$2doi$$a10.1002/ente.202201366
000917540 0247_ $$2ISSN$$a2194-4288
000917540 0247_ $$2ISSN$$a2194-4296
000917540 0247_ $$2Handle$$a2128/34162
000917540 0247_ $$2WOS$$aWOS:000913991200001
000917540 037__ $$aFZJ-2023-00743
000917540 041__ $$aEnglish
000917540 082__ $$a620
000917540 1001_ $$0P:(DE-Juel1)178961$$aRüde, Timo$$b0$$ufzj
000917540 245__ $$aPerformance of Continuous Hydrogen Production from Perhydro Benzyltoluene by Catalytic Distillation and Heat Integration Concepts with a Fuel Cell
000917540 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2023
000917540 3367_ $$2DRIVER$$aarticle
000917540 3367_ $$2DataCite$$aOutput Types/Journal article
000917540 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1679049076_15356
000917540 3367_ $$2BibTeX$$aARTICLE
000917540 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917540 3367_ $$00$$2EndNote$$aJournal Article
000917540 520__ $$aThe benzyltoluene-based liquid organic hydrogen carrier (LOHC) system enables the safe transport and loss-free storage of hydrogen. At least 26% of the lower heating value of the released hydrogen, however, have to be invested in form of heat to release the stored hydrogen. The low operation temperatures of catalytic distillation (CD) can facilitate waste heat integration to reduce external heat demand. In this work, we demonstrate the continuous hydrogen release from perhydro benzyltoluene via CD. The experimental results reveal that this mode of operation leads to a high hydrogen release rate and very efficient noble metal catalyst usage at exceptionally mild conditions. The hydrogen-based productivity of platinum of 0.35 gH2 gPt-1 min-1 (0.7 kWLHV_H2 gPt-1) at a dehydrogenation temperature of only 267 °C was found to be nearly four times higher than for the conventional continuous liquid phase dehydrogenation at the same temperature. Furthermore, we describe simulation results of the CD process. The feasibility of a fully heat integrated process for electricity generation from the released hydrogen via CD using waste heat from the fuel cell for the CD reboiler is demonstrated. Our simulation highlights the technical potential of coupling the H12-BT dehydrogenation by CD with high-temperature fuel cell operation.
000917540 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000917540 588__ $$aDataset connected to DataCite
000917540 7001_ $$0P:(DE-HGF)0$$aLu, Yulin$$b1
000917540 7001_ $$0P:(DE-HGF)0$$aAnschütz, Leon$$b2
000917540 7001_ $$0P:(DE-Juel1)188632$$aBlasius, Marco$$b3$$ufzj
000917540 7001_ $$0P:(DE-HGF)0$$aWolf, Moritz$$b4
000917540 7001_ $$0P:(DE-Juel1)174308$$aPreuster, Patrick$$b5$$ufzj
000917540 7001_ $$0P:(DE-Juel1)162305$$aWasserscheid, Peter$$b6$$ufzj
000917540 7001_ $$0P:(DE-Juel1)180645$$aGeißelbrecht, Michael$$b7$$eCorresponding author
000917540 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.202201366$$gp. 2201366 -$$n3$$p2201366$$tEnergy technology$$v11$$x2194-4288$$y2023
000917540 8564_ $$uhttps://juser.fz-juelich.de/record/917540/files/Performance%20of%20Continuous%20Hydrogen%20Production%20from%20Perhydro%20Benzyltoluene%20by%20Catalytic%20Distillation.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000917540 8564_ $$uhttps://juser.fz-juelich.de/record/917540/files/Energy%20Tech%20-%202022%20-%20R%20de%20-%20Performance%20of%20Continuous%20Hydrogen%20Production%20from%20Perhydro%20Benzyltoluene%20by%20Catalytic.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000917540 8767_ $$d2023-01-17$$eHybrid-OA$$jDEAL
000917540 909CO $$ooai:juser.fz-juelich.de:917540$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000917540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178961$$aForschungszentrum Jülich$$b0$$kFZJ
000917540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188632$$aForschungszentrum Jülich$$b3$$kFZJ
000917540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174308$$aForschungszentrum Jülich$$b5$$kFZJ
000917540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162305$$aForschungszentrum Jülich$$b6$$kFZJ
000917540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180645$$aForschungszentrum Jülich$$b7$$kFZJ
000917540 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000917540 9141_ $$y2023
000917540 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
000917540 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000917540 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-12$$wger
000917540 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
000917540 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917540 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2022$$d2023-10-26
000917540 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000917540 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000917540 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000917540 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000917540 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
000917540 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
000917540 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000917540 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000917540 920__ $$lyes
000917540 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000917540 9801_ $$aAPC
000917540 9801_ $$aFullTexts
000917540 980__ $$ajournal
000917540 980__ $$aVDB
000917540 980__ $$aUNRESTRICTED
000917540 980__ $$aI:(DE-Juel1)IEK-11-20140314
000917540 980__ $$aAPC
000917540 981__ $$aI:(DE-Juel1)IET-2-20140314