000917540 001__ 917540 000917540 005__ 20240712112926.0 000917540 0247_ $$2doi$$a10.1002/ente.202201366 000917540 0247_ $$2ISSN$$a2194-4288 000917540 0247_ $$2ISSN$$a2194-4296 000917540 0247_ $$2Handle$$a2128/34162 000917540 0247_ $$2WOS$$aWOS:000913991200001 000917540 037__ $$aFZJ-2023-00743 000917540 041__ $$aEnglish 000917540 082__ $$a620 000917540 1001_ $$0P:(DE-Juel1)178961$$aRüde, Timo$$b0$$ufzj 000917540 245__ $$aPerformance of Continuous Hydrogen Production from Perhydro Benzyltoluene by Catalytic Distillation and Heat Integration Concepts with a Fuel Cell 000917540 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2023 000917540 3367_ $$2DRIVER$$aarticle 000917540 3367_ $$2DataCite$$aOutput Types/Journal article 000917540 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1679049076_15356 000917540 3367_ $$2BibTeX$$aARTICLE 000917540 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000917540 3367_ $$00$$2EndNote$$aJournal Article 000917540 520__ $$aThe benzyltoluene-based liquid organic hydrogen carrier (LOHC) system enables the safe transport and loss-free storage of hydrogen. At least 26% of the lower heating value of the released hydrogen, however, have to be invested in form of heat to release the stored hydrogen. The low operation temperatures of catalytic distillation (CD) can facilitate waste heat integration to reduce external heat demand. In this work, we demonstrate the continuous hydrogen release from perhydro benzyltoluene via CD. The experimental results reveal that this mode of operation leads to a high hydrogen release rate and very efficient noble metal catalyst usage at exceptionally mild conditions. The hydrogen-based productivity of platinum of 0.35 gH2 gPt-1 min-1 (0.7 kWLHV_H2 gPt-1) at a dehydrogenation temperature of only 267 °C was found to be nearly four times higher than for the conventional continuous liquid phase dehydrogenation at the same temperature. Furthermore, we describe simulation results of the CD process. The feasibility of a fully heat integrated process for electricity generation from the released hydrogen via CD using waste heat from the fuel cell for the CD reboiler is demonstrated. Our simulation highlights the technical potential of coupling the H12-BT dehydrogenation by CD with high-temperature fuel cell operation. 000917540 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0 000917540 588__ $$aDataset connected to DataCite 000917540 7001_ $$0P:(DE-HGF)0$$aLu, Yulin$$b1 000917540 7001_ $$0P:(DE-HGF)0$$aAnschütz, Leon$$b2 000917540 7001_ $$0P:(DE-Juel1)188632$$aBlasius, Marco$$b3$$ufzj 000917540 7001_ $$0P:(DE-HGF)0$$aWolf, Moritz$$b4 000917540 7001_ $$0P:(DE-Juel1)174308$$aPreuster, Patrick$$b5$$ufzj 000917540 7001_ $$0P:(DE-Juel1)162305$$aWasserscheid, Peter$$b6$$ufzj 000917540 7001_ $$0P:(DE-Juel1)180645$$aGeißelbrecht, Michael$$b7$$eCorresponding author 000917540 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.202201366$$gp. 2201366 -$$n3$$p2201366$$tEnergy technology$$v11$$x2194-4288$$y2023 000917540 8564_ $$uhttps://juser.fz-juelich.de/record/917540/files/Performance%20of%20Continuous%20Hydrogen%20Production%20from%20Perhydro%20Benzyltoluene%20by%20Catalytic%20Distillation.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510 000917540 8564_ $$uhttps://juser.fz-juelich.de/record/917540/files/Energy%20Tech%20-%202022%20-%20R%20de%20-%20Performance%20of%20Continuous%20Hydrogen%20Production%20from%20Perhydro%20Benzyltoluene%20by%20Catalytic.pdf$$yRestricted$$zStatID:(DE-HGF)0599 000917540 8767_ $$d2023-01-17$$eHybrid-OA$$jDEAL 000917540 909CO $$ooai:juser.fz-juelich.de:917540$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire 000917540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178961$$aForschungszentrum Jülich$$b0$$kFZJ 000917540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188632$$aForschungszentrum Jülich$$b3$$kFZJ 000917540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174308$$aForschungszentrum Jülich$$b5$$kFZJ 000917540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162305$$aForschungszentrum Jülich$$b6$$kFZJ 000917540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180645$$aForschungszentrum Jülich$$b7$$kFZJ 000917540 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0 000917540 9141_ $$y2023 000917540 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12 000917540 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000917540 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-12$$wger 000917540 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12 000917540 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000917540 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2022$$d2023-10-26 000917540 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26 000917540 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26 000917540 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26 000917540 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26 000917540 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26 000917540 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26 000917540 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000917540 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019 000917540 920__ $$lyes 000917540 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0 000917540 9801_ $$aAPC 000917540 9801_ $$aFullTexts 000917540 980__ $$ajournal 000917540 980__ $$aVDB 000917540 980__ $$aUNRESTRICTED 000917540 980__ $$aI:(DE-Juel1)IEK-11-20140314 000917540 980__ $$aAPC 000917540 981__ $$aI:(DE-Juel1)IET-2-20140314