000917541 001__ 917541 000917541 005__ 20240712113045.0 000917541 0247_ $$2doi$$a10.1002/cssc.202202189 000917541 0247_ $$2ISSN$$a1864-5631 000917541 0247_ $$2ISSN$$a1864-564X 000917541 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-00744 000917541 0247_ $$2pmid$$a36533855 000917541 0247_ $$2WOS$$aWOS:000916026500001 000917541 037__ $$aFZJ-2023-00744 000917541 082__ $$a540 000917541 1001_ $$aKubot, Maximilian$$b0 000917541 245__ $$aLithium Difluorophosphate: Boon for High Voltage Li Ion Batteries and a Bane for high Thermal Stability/low Toxicity: Towards Synergistic Dual‐Additives to Circumvent this Dilemma 000917541 260__ $$aWeinheim$$bWiley-VCH$$c2023 000917541 3367_ $$2DRIVER$$aarticle 000917541 3367_ $$2DataCite$$aOutput Types/Journal article 000917541 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712752177_24402 000917541 3367_ $$2BibTeX$$aARTICLE 000917541 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000917541 3367_ $$00$$2EndNote$$aJournal Article 000917541 500__ $$aZudem gefördert durch: BMWK "Go3”(03ETE002D) 000917541 520__ $$aThe specific energy/energy density of state-of-the-art (SOTA) Li-ion batteries can be increased by raising the upper charge voltage. However, instability of SOTA cathodes (i. e., LiNiyCoxMnyO2; x+y+z=1; NCM) triggers electrode crosstalk through enhanced transition metal (TM) dissolution and contributes to severe capacity fade; in the worst case, to a sudden death (“roll-over failure”). Lithium difluorophosphate (LiDFP) as electrolyte additive is able to boost high voltage performance by scavenging dissolved TMs. However, LiDFP is chemically unstable and rapidly decomposes to toxic (oligo)organofluorophosphates (OFPs) at elevated temperatures; a process that can be precisely analyzed by means of high-performance liquid chromatography–high resolution mass spectroscopy. The toxicity of LiDFP can be proven by the well-known acetylcholinesterase inhibition test. Interestingly, although fluoroethylene carbonate (FEC) is inappropriate for high voltage applications as a single electrolyte additive due to rollover failure, it is able to suppress formation of toxic OFPs. Based on this, a synergistic LiDFP/FEC dual-additive approach is suggested in this work, showing characteristic benefits of both individual additives (good capacity retention at high voltage in the presence of LiDFP and decreased OFP formation/toxicity induced by FEC). 000917541 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0 000917541 536__ $$0G:(BMBF)03XP0311B$$aBMBF 03XP0311B - BatgasMod - Batteriegasungs-Modellierung (03XP0311B)$$c03XP0311B$$x1 000917541 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000917541 7001_ $$aFrankenstein, Lars$$b1 000917541 7001_ $$aMuschiol, Elisabeth$$b2 000917541 7001_ $$aKlein, Sven$$b3 000917541 7001_ $$0P:(DE-HGF)0$$aEsselen, Melanie$$b4 000917541 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5$$ufzj 000917541 7001_ $$0P:(DE-HGF)0$$aNowak, Sascha$$b6 000917541 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b7$$eCorresponding author 000917541 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.202202189$$gp. cssc.202202189$$n6$$pe202202189$$tChemSusChem$$v16$$x1864-5631$$y2023 000917541 8564_ $$uhttps://juser.fz-juelich.de/record/917541/files/ChemSusChem%20-%202022%20-%20Kubot%20-%20Lithium%20Difluorophosphate%20A%20Boon%20for%20High%20Voltage%20Li%20Ion%20Batteries%20and%20a%20Bane%20for%20High.pdf$$yOpenAccess 000917541 8767_ $$d2023-01-17$$eHybrid-OA$$jDEAL 000917541 909CO $$ooai:juser.fz-juelich.de:917541$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire 000917541 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ 000917541 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b7$$kFZJ 000917541 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 000917541 9141_ $$y2023 000917541 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000917541 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019 000917541 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25 000917541 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-25$$wger 000917541 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0 000917541 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25 000917541 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000917541 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25 000917541 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25 000917541 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25 000917541 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25 000917541 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25 000917541 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2022$$d2023-10-25 000917541 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2022$$d2023-10-25 000917541 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 000917541 9801_ $$aAPC 000917541 9801_ $$aFullTexts 000917541 980__ $$ajournal 000917541 980__ $$aVDB 000917541 980__ $$aUNRESTRICTED 000917541 980__ $$aI:(DE-Juel1)IEK-12-20141217 000917541 980__ $$aAPC 000917541 981__ $$aI:(DE-Juel1)IMD-4-20141217