Preprint FZJ-2023-00755

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Graph neural networks for the prediction of molecular structure-property relationships

 ;  ;  ;  ;

2022
arXiv

arXiv () [10.48550/ARXIV.2208.04852]

This record in other databases:

Please use a persistent id in citations:   doi:

Abstract: Molecular property prediction is of crucial importance in many disciplines such as drug discovery, molecular biology, or material and process design. The frequently employed quantitative structure-property/activity relationships (QSPRs/QSARs) characterize molecules by descriptors which are then mapped to the properties of interest via a linear or nonlinear model. In contrast, graph neural networks, a novel machine learning method, directly work on the molecular graph, i.e., a graph representation where atoms correspond to nodes and bonds correspond to edges. GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors as in QSPRs/QSARs. GNNs have been shown to achieve state-of-the-art prediction performance on various property predictions tasks and represent an active field of research. We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.

Keyword(s): Biomolecules (q-bio.BM) ; Machine Learning (cs.LG) ; Optimization and Control (math.OC) ; FOS: Biological sciences ; FOS: Computer and information sciences ; FOS: Mathematics


Contributing Institute(s):
  1. Modellierung von Energiesystemen (IEK-10)
Research Program(s):
  1. 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112) (POF4-112)

Appears in the scientific report 2022
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institutssammlungen > ICE > ICE-1
Dokumenttypen > Berichte > Vorabdrucke
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-10
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2023-01-17, letzte Änderung am 2024-07-12


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)