Hauptseite > Publikationsdatenbank > Nonlinear Isometric Manifold Learning for Injective Normalizing Flows |
Preprint | FZJ-2023-00760 |
; ; ; ;
2022
arXiv
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/33644 doi:10.48550/ARXIV.2203.03934
Abstract: To model manifold data using normalizing flows, we propose to employ the isometric autoencoder to design nonlinear encodings with explicit inverses. The isometry allows us to separate manifold learning and density estimation and train both parts to high accuracy. Applied to the MNIST data set, the combined approach generates high-quality images.
Keyword(s): Machine Learning (cs.LG) ; FOS: Computer and information sciences
![]() |
The record appears in these collections: |