| Home > Workflow collections > Publication Charges > Graph machine learning for design of high‐octane fuels > print |
| 001 | 917618 | ||
| 005 | 20240712112858.0 | ||
| 024 | 7 | _ | |a 10.1002/aic.17971 |2 doi |
| 024 | 7 | _ | |a 0001-1541 |2 ISSN |
| 024 | 7 | _ | |a 1547-5905 |2 ISSN |
| 024 | 7 | _ | |a 2128/34205 |2 Handle |
| 024 | 7 | _ | |a WOS:000903130000001 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-00813 |
| 082 | _ | _ | |a 660 |
| 100 | 1 | _ | |a Rittig, Jan G. |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Graph machine learning for design of high‐octane fuels |
| 260 | _ | _ | |a Hoboken, NJ |c 2023 |b Wiley |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1679989646_1902 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Fuels with high-knock resistance enable modern spark-ignition engines to achieve high efficiency and thus low CO2 emissions. Identification of molecules with desired autoignition properties indicated by a high research octane number and a high octane sensitivity is therefore of great practical relevance and can be supported by computer-aided molecular design (CAMD). Recent developments in the field of graph machine learning (graph-ML) provide novel, promising tools for CAMD. We propose a modular graph-ML CAMD framework that integrates generative graph-ML models with graph neural networks and optimization, enabling the design of molecules with desired ignition properties in a continuous molecular space. In particular, we explore the potential of Bayesian optimization and genetic algorithms in combination with generative graph-ML models. The graph-ML CAMD framework successfully identifies well-established high-octane components. It also suggests new candidates, one of which we experimentally investigate and use to illustrate the need for further autoignition training data. |
| 536 | _ | _ | |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112) |0 G:(DE-HGF)POF4-1121 |c POF4-112 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Ritzert, Martin |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Schweidtmann, Artur M. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Winkler, Stefanie |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Weber, Jana M. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Morsch, Philipp |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Heufer, Karl Alexander |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Grohe, Martin |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Mitsos, Alexander |0 P:(DE-Juel1)172025 |b 8 |u fzj |
| 700 | 1 | _ | |a Dahmen, Manuel |0 P:(DE-Juel1)172097 |b 9 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1002/aic.17971 |0 PERI:(DE-600)2020333-0 |n 4 |p e17971 |t AIChE journal |v 69 |y 2023 |x 0001-1541 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/917618/files/AIChE%20Journal%20-%202022%20-%20Rittig%20-%20Graph%20machine%20learning%20for%20design%20of%20high%E2%80%90octane%20fuels.pdf |
| 856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/917618/files/supplement_embedded.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:917618 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 5 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 6 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 7 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)172025 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 8 |6 P:(DE-Juel1)172025 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)172097 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Energiesystemdesign (ESD) |1 G:(DE-HGF)POF4-110 |0 G:(DE-HGF)POF4-112 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Digitalisierung und Systemtechnik |9 G:(DE-HGF)POF4-1121 |x 0 |
| 914 | 1 | _ | |y 2023 |
| 915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
| 915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
| 915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
| 915 | p | c | |a DEAL: Wiley 2019 |0 PC:(DE-HGF)0120 |2 APC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-08 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2022-11-08 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-08 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-29 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-08-29 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b AICHE J : 2022 |d 2023-08-29 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-29 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
| 980 | _ | _ | |a APC |
| 981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|