000009524 001__ 9524
000009524 005__ 20210129210501.0
000009524 0247_ $$2pmid$$apmid:20518515
000009524 0247_ $$2DOI$$a10.1021/jp103101t
000009524 0247_ $$2WOS$$aWOS:000278981900004
000009524 0247_ $$2altmetric$$aaltmetric:1613660
000009524 037__ $$aPreJuSER-9524
000009524 041__ $$aeng
000009524 082__ $$a530
000009524 084__ $$2WoS$$aChemistry, Physical
000009524 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000009524 1001_ $$0P:(DE-HGF)0$$aRuckenbauer, M.$$b0
000009524 245__ $$aNonadiabatic Excited-State Dynamics with Hybrid ab Initio Quantum-Mechanical/Molecular-Mechanical Methods: Solvation of the Pentadieniminium Cation in Apolar Media
000009524 260__ $$aWashington, DC$$bSoc.$$c2010
000009524 300__ $$a6757 - 6765
000009524 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000009524 3367_ $$2DataCite$$aOutput Types/Journal article
000009524 3367_ $$00$$2EndNote$$aJournal Article
000009524 3367_ $$2BibTeX$$aARTICLE
000009524 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000009524 3367_ $$2DRIVER$$aarticle
000009524 440_0 $$03693$$aJournal of Physical Chemistry A$$v114$$x1089-5639$$y25
000009524 500__ $$aThis work was supported by the Austrian Science Fund within the framework of the Special Research Program F16 (Advanced Light Sources) and Project P18411-N19, by the project FS397001-CPAMMS in the University Priority Research Area Computational Science of the University of Vienna, and by the COST Chemistry Action D37 Gridchem, Working Groups PHOTODYN and ELAMS. Computational resources at the Luna-cluster of the Institute for Computer Science were accessed using the Vienna Grid Environment (VGE. Calculations were partially performed at the Linux PC cluster Schrodinger III of the computer center of the University of Vienna.
000009524 520__ $$aA new implementation of nonadiabatic excited-state dynamics using hybrid methods is presented. The current approach is aimed at the simulation of photoexcited molecules in solution. The chromophore is treated at the ab initio level, and its interaction with the solvent is approximated by point charges within the electrostatic embedding approach and by a Lennard-Jones potential for the nonbonded interactions. Multireference configuration interaction (MRCI) and multiconfiguration self-consistent field (MCSCF) methods can be used. The program implementation has been performed on the basis of the Columbus and Newton-X program systems. For example, the dynamics of penta-2,4-dien-1-iminium (PSB3) and 4-methyl-penta-2,4-dien-1-iminium cations (MePSB3) was investigated in gas phase and in n-hexane solution. The excited-state (S(1)) lifetime and temporal evolution of geometrical parameters were computed. In the case of PSB3 the n-hexane results resemble closely the gas phase data. MePSB3, however, shows a distinct extension of lifetime due to steric hindering of the torsion around the central bond because of solute-solvent interactions.
000009524 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000009524 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000009524 588__ $$aDataset connected to Web of Science, Pubmed
000009524 650_2 $$2MeSH$$aCations: chemistry
000009524 650_2 $$2MeSH$$aImines: chemistry
000009524 650_2 $$2MeSH$$aModels, Molecular
000009524 650_2 $$2MeSH$$aMolecular Conformation
000009524 650_2 $$2MeSH$$aQuantum Theory
000009524 650_2 $$2MeSH$$aSolvents: chemistry
000009524 650_2 $$2MeSH$$aTime Factors
000009524 650_7 $$00$$2NLM Chemicals$$aCations
000009524 650_7 $$00$$2NLM Chemicals$$aImines
000009524 650_7 $$00$$2NLM Chemicals$$aSolvents
000009524 650_7 $$2WoSType$$aJ
000009524 7001_ $$0P:(DE-HGF)0$$aBarbatti, M.$$b1
000009524 7001_ $$0P:(DE-Juel1)132204$$aMüller, T.$$b2$$uFZJ
000009524 7001_ $$0P:(DE-HGF)0$$aLischka, H.$$b3
000009524 773__ $$0PERI:(DE-600)2006031-2$$a10.1021/jp103101t$$gVol. 114, p. 6757 - 6765$$p6757 - 6765$$q114<6757 - 6765$$tThe @journal of physical chemistry <Washington, DC> / A$$v114$$x1089-5639$$y2010
000009524 8567_ $$uhttp://dx.doi.org/10.1021/jp103101t
000009524 909CO $$ooai:juser.fz-juelich.de:9524$$pVDB
000009524 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000009524 9141_ $$y2010
000009524 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000009524 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000009524 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000009524 970__ $$aVDB:(DE-Juel1)119414
000009524 980__ $$aVDB
000009524 980__ $$aConvertedRecord
000009524 980__ $$ajournal
000009524 980__ $$aI:(DE-Juel1)JSC-20090406
000009524 980__ $$aUNRESTRICTED