Journal Article PreJuSER-9524

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Nonadiabatic Excited-State Dynamics with Hybrid ab Initio Quantum-Mechanical/Molecular-Mechanical Methods: Solvation of the Pentadieniminium Cation in Apolar Media

 ;  ;  ;

2010
Soc. Washington, DC

The journal of physical chemistry <Washington, DC> / A 114, 6757 - 6765 () [10.1021/jp103101t]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: A new implementation of nonadiabatic excited-state dynamics using hybrid methods is presented. The current approach is aimed at the simulation of photoexcited molecules in solution. The chromophore is treated at the ab initio level, and its interaction with the solvent is approximated by point charges within the electrostatic embedding approach and by a Lennard-Jones potential for the nonbonded interactions. Multireference configuration interaction (MRCI) and multiconfiguration self-consistent field (MCSCF) methods can be used. The program implementation has been performed on the basis of the Columbus and Newton-X program systems. For example, the dynamics of penta-2,4-dien-1-iminium (PSB3) and 4-methyl-penta-2,4-dien-1-iminium cations (MePSB3) was investigated in gas phase and in n-hexane solution. The excited-state (S(1)) lifetime and temporal evolution of geometrical parameters were computed. In the case of PSB3 the n-hexane results resemble closely the gas phase data. MePSB3, however, shows a distinct extension of lifetime due to steric hindering of the torsion around the central bond because of solute-solvent interactions.

Keyword(s): Cations: chemistry (MeSH) ; Imines: chemistry (MeSH) ; Models, Molecular (MeSH) ; Molecular Conformation (MeSH) ; Quantum Theory (MeSH) ; Solvents: chemistry (MeSH) ; Time Factors (MeSH) ; Cations ; Imines ; Solvents ; J


Note: This work was supported by the Austrian Science Fund within the framework of the Special Research Program F16 (Advanced Light Sources) and Project P18411-N19, by the project FS397001-CPAMMS in the University Priority Research Area Computational Science of the University of Vienna, and by the COST Chemistry Action D37 Gridchem, Working Groups PHOTODYN and ELAMS. Computational resources at the Luna-cluster of the Institute for Computer Science were accessed using the Vienna Grid Environment (VGE. Calculations were partially performed at the Linux PC cluster Schrodinger III of the computer center of the University of Vienna.

Contributing Institute(s):
  1. Jülich Supercomputing Centre (JSC)
Research Program(s):
  1. Scientific Computing (FUEK411) (FUEK411)
  2. 411 - Computational Science and Mathematical Methods (POF2-411) (POF2-411)

Appears in the scientific report 2010
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Institute Collections > JSC
Publications database

 Record created 2012-11-13, last modified 2021-01-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)