Home > Workflow collections > Publication Charges > Density-Potential Functional Theory of Electrochemical Double Layers: Calibration on the Ag(111)-KPF 6 System and Parametric Analysis > print |
001 | 972118 | ||
005 | 20240712113152.0 | ||
024 | 7 | _ | |a 10.1021/acs.jctc.2c00799 |2 doi |
024 | 7 | _ | |a 1549-9618 |2 ISSN |
024 | 7 | _ | |a 1549-9626 |2 ISSN |
024 | 7 | _ | |a 2128/34391 |2 Handle |
024 | 7 | _ | |a 36651849 |2 pmid |
024 | 7 | _ | |a WOS:000920332400001 |2 WOS |
037 | _ | _ | |a FZJ-2023-01080 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Huang, Jun |0 P:(DE-Juel1)192568 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Density-Potential Functional Theory of Electrochemical Double Layers: Calibration on the Ag(111)-KPF 6 System and Parametric Analysis |
260 | _ | _ | |a Washington, DC |c 2023 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1707830429_14049 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The density-potential functional theory (DPFT) of electrochemical double layer (EDL) is upgraded by adopting (generalized) gradient approximations for kinetic, exchange, and correlation functionals of metal electrons. A new numerical scheme that is more stable and converges faster is proposed to solve the DPFT model. The DPFT model is calibrated with existing differential double-layer capacitance (Cdl) data of the EDL at Ag(111)-KPF6 aqueous interface at five concentrations at room temperature. Metal electronic effects are essential to explain why the two peaks of the camel-shaped Cdl curves are almost symmetric in spite of the size difference of the hydrated cations and anions. A systematic parametric analysis is then conducted in terms of key EDL properties, including the potential of zero charge and the differential capacitance. The parametric analysis, on the one hand, elucidates how quantum mechanical behaviors of metal electrons as well as interactions between metal electrons and the electrolyte solution impact the EDL properties and, on the other hand, identifies key parameters of the DPFT model, which should be calibrated using first-principles calculations and/or advanced experiments in the future. |
536 | _ | _ | |a 1212 - Materials and Interfaces (POF4-121) |0 G:(DE-HGF)POF4-1212 |c POF4-121 |f POF IV |x 0 |
536 | _ | _ | |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121) |0 G:(DE-HGF)POF4-1215 |c POF4-121 |f POF IV |x 1 |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
773 | _ | _ | |a 10.1021/acs.jctc.2c00799 |g p. acs.jctc.2c00799 |0 PERI:(DE-600)2166976-4 |n 3 |p 1003–1013 |t Journal of chemical theory and computation |v 19 |y 2023 |x 1549-9618 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/972118/files/acs.jctc.2c00799.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:972118 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)192568 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1212 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1215 |x 1 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 2 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-15 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-15 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-20 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM THEORY COMPUT : 2022 |d 2023-08-20 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J CHEM THEORY COMPUT : 2022 |d 2023-08-20 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-13-20190226 |k IEK-13 |l IEK-13 |x 0 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-13-20190226 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IET-3-20190226 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|