001     996759
005     20240712113250.0
024 7 _ |a 10.1016/j.ijhydene.2022.11.288
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a 2128/34232
|2 Handle
024 7 _ |a WOS:000966458800001
|2 WOS
037 _ _ |a FZJ-2023-01168
082 _ _ |a 620
100 1 _ |a Scheepers, Fabian
|0 P:(DE-Juel1)166215
|b 0
|e Corresponding author
245 _ _ |a Cost-optimized design point and operating strategy of polymer electrolyte membrane electrolyzers
260 _ _ |a New York, NY [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1680259943_32589
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Green hydrogen is a key solution for reducing CO2 emissions in various industrial applications, but high production costs continue to hinder its market penetration today. Better competitiveness is linked to lower investment costs and higher efficiency of the conversion technologies, among which polymer electrolyte membrane electrolysis seems to be attractive. Although new manufacturing techniques and materials can help achieve these goals, a less frequently investigated approach is the optimization of the design point and operating strategy of electrolyzers. This means in particular that the questions of how often a system should be operated and which cell voltage should be applied must be answered. As existing techno-economic models feature gaps, which means that these questions cannot be adequately answered, a modified model is introduced here. In this model, different technical parameters are implemented and correlated to each other in order to simulate the lowest possible levelized cost of hydrogen and extract the required designs and strategies from this. In each case investigated, the recommended cost-based cell voltage that should be applied to the system is surprisingly low compared to the assumptions made in previous publications. Depending on the case, the cell voltage is in a range between 1.6 V and 1.8 V, with an annual operation of 2000–8000 h. The wide range of results clearly indicate how individual the design and operation must be, but with efficiency gains of several percent, the effect of optimization will be indispensable in the future.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Stähler, Markus
|0 P:(DE-Juel1)129930
|b 1
|u fzj
700 1 _ |a Stähler, Andrea
|0 P:(DE-Juel1)132718
|b 2
|u fzj
700 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 3
|u fzj
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 4
773 _ _ |a 10.1016/j.ijhydene.2022.11.288
|g p. S0360319922056300
|0 PERI:(DE-600)1484487-4
|n 33
|p 12185-12199
|t International journal of hydrogen energy
|v 48
|y 2023
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/996759/files/1-s2.0-S0360319922056300-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:996759
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166215
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129930
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132718
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)129883
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J HYDROGEN ENERG : 2022
|d 2023-08-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21