Journal Article PreJuSER-1002

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Intercomparison of oxygenated volatile organic compound measurements at the SAPHIR atmosphere simulation chamber

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2008
Union Washington, DC

Journal of Geophysical Research 113, D20307 () [10.1029/2008JD009865]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: This paper presents results from the first large-scale in situ intercomparison of oxygenated volatile organic compound (OVOC) measurements. The intercomparison was conducted blind at the large (270 m(3)) simulation chamber, Simulation of Atmospheric Photochemistry in a Large Reaction Chamber (SAPHIR), in Julich, Germany. Fifteen analytical instruments, representing a wide range of techniques, were challenged with measuring atmospherically relevant OVOC species and toluene (14 species, C-1 to C-7) in the approximate range of 0.5-10 ppbv under three different conditions: (1) OVOCs with no humidity or ozone, (2) OVOCs with humidity added (r.h. approximate to 50%), and (3) OVOCs with ozone (approximate to 60 ppbv) and humidity (r.h. approximate to 50%). The SAPHIR chamber proved to be an excellent facility for conducting this experiment. Measurements from individual instruments were compared to mixing ratios calculated from the chamber volume and the known amount of OVOC injected into the chamber. Benzaldehyde and 1-butanol, compounds with the lowest vapor pressure of those studied, presented the most overall difficulty because of a less than quantitative transfer through some of the participants' analytical systems. The performance of each individual instrument is evaluated with respect to reference values in terms of time series and correlation plots for each compound under the three measurement conditions. A few of the instruments performed very well, closely matching the reference values, and all techniques demonstrated the potential for quantitative OVOC measurements. However, this study showed that nonzero offsets are present for specific compounds in a number of instruments and overall improvements are necessary for the majority of the techniques evaluated here.

Keyword(s): J


Note: This work was supported by the EU FP-6 programs ACCENT (GOCE CT-2004-505337) and EUROCHAMP (RII3-CT-2004-505968). We thank R. Haseler and F. J. Johnen for the support of the experiments.

Research Program(s):
  1. Atmosphäre und Klima (P22)

Appears in the scientific report 2008
Database coverage:
OpenAccess ; JCR ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-ENERGY
Institute Collections > ICE > ICE-3
Workflow collections > Public records
IEK > IEK-8
Publications database
Open Access

 Record created 2012-11-13, last modified 2024-07-12