Journal Article/Contribution to a conference proceedings FZJ-2023-01817

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Implementation of ResNet-50 for the Detection of ARDS in Chest X-Rays using transfer-learning

 ;  ;  ;

2023
Infinite Science GmbH Lübeck

16. Interdisziplinäres Symposium Automatisierungstechnische Verfahren für die Medizintechnik, AUTOMED, GießenGießen, Germany, 30 Mar 2023 - 31 Mar 20232023-03-302023-03-31 Proceedings on automation in medical engineering 2(1), ID 742 ()

Please use a persistent id in citations:

Abstract: Acute Respiratory Distress Syndrome is a severe condition with high morbidity and mortality. The current standard for the diagnosis of ARDS was proposed by the Berlin-Definition in 2012. However, studies have shown, that ARDS is often recognized too late or not at all. Smart methods, like machine learning algorithms, may help clinicians to identify ARDS earlier and therefore initiate the appropriate therapy. To address the imaging assessment of the Berlin-Definition, a deep learning model for the detection of ARDS in x-rays is proposed. The model achieved an AUCscore of 92.6%, a sensitivity of 87% and a specificity of 97%.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)
  2. SMITH - Medizininformatik-Konsortium - Beitrag Forschungszentrum Jülich (01ZZ1803M) (01ZZ1803M)

Appears in the scientific report 2023
Database coverage:
Creative Commons Attribution CC BY 4.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2023-04-13, letzte Änderung am 2023-09-01


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)