Journal Article FZJ-2023-01906

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Influence of biochar incorporation on the collector surface properties and the transport of silver nanoparticles in porous media

 ;  ;  ;  ;  ;

2023
Elsevier Amsterdam [u.a.]

Journal of environmental management 328, 116943 () [10.1016/j.jenvman.2022.116943]

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Biochar is widely used as a soil amendment due to its environmental friendliness and convenient availability. It is believed that the presence of biochar in porous media can influence the transport of colloidal and solute contaminants. In this study, different mass ratios of biochar were added to packed sand with a rough or smooth surface to determine the significance of biochar on the retention and release of silver nanoparticles (AgNPs). The results showed that biochar reduced the transport of AgNPs in rough and smooth sands under different solution conditions. A small amount of biochar (0.1–1% in mass percentage) can significantly enhance the retention of AgNPs due to the alteration in collector surface roughness and chemical heterogeneity that potentially reduce the energy barrier for retention. Furthermore, the retention of AgNPs in rough sand was always higher than that in smooth sand under the same experimental conditions. The presence of biochar also produced nonmonotonic retention of AgNPs mainly due to the changes in collector surface roughness. Additionally, the AgNPs retention associated with biochar tended to be irreversible due to the charge heterogeneity, while the reversible retention could mainly occur on a rough sand surface via shallow primary minima. This work highlights the significance of collector surface roughness that needs to be considered in the process of biochar amendment for practical applications to effectively immobilize colloidal contaminants in soil or groundwater.

Keyword(s): Geosciences (2nd)

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2023-04-19, last modified 2023-09-29


Published on 2022-12-12. Available in OpenAccess from 2024-12-12.:
Download fulltext PDF
(additional files)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)