Contribution to a conference proceedings/Journal Article FZJ-2023-02484

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Mitigating the Hubbard Sign Problem. A Novel Application of Machine Learning

 ;

2022
SISSA Trieste

The 39th International Symposium on Lattice Field Theory, BonnBonn, Germany, Proceedings of Science / International School for Advanced Studies LATTICE2022, 032 () [10.22323/1.430.0032]

This record in other databases:

Please use a persistent id in citations: doi:  doi:

Abstract: Many fascinating systems suffer from a severe (complex action) sign problem preventing us from calculating them with Markov Chain Monte Carlo simulations. One promising method to alleviate the sign problem is the transformation of the integration domain towards Lefschetz Thimbles. Unfortunately, this suffers from poor scaling originating in numerically integrating of flow equations and evaluation of an induced Jacobian. In this proceedings we present a new preliminary Neural Network architecture based on complex-valued affine coupling layers. This network performs such a transformation efficiently, ultimately allowing simulation of systems with a severe sign problem. We test this method within the Hubbard Model at finite chemical potential, modelling strongly correlated electrons on a spatial lattice of ions.

Keyword(s): Strongly Correlated Electrons (cond-mat.str-el) ; High Energy Physics - Lattice (hep-lat) ; FOS: Physical sciences

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
  2. Theorie der Starken Wechselwirkung (IAS-4)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. DFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076) (196253076)
  3. SDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005) (PF-JARA-SDS005)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; DOAJ ; OpenAccess ; DOAJ Seal
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IAS > IAS-4
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2023-06-27, letzte Änderung am 2024-02-26


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)