Preprint FZJ-2023-03643

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
The Multi-modality Cell Segmentation Challenge: Towards Universal Solutions

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2023
arXiv

arxiv () [10.48550/arXiv.2308.05864]

This record in other databases:

Please use a persistent id in citations: doi:  doi:  doi:

Abstract: Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyperparameters in different experimental settings. Here, we present a multi-modality cell segmentation benchmark, comprising over 1500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods, but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.

Keyword(s): Image and Video Processing (eess.IV) ; Computer Vision and Pattern Recognition (cs.CV) ; Machine Learning (cs.LG) ; Quantitative Methods (q-bio.QM) ; FOS: Electrical engineering, electronic engineering, information engineering ; FOS: Computer and information sciences ; FOS: Biological sciences


Contributing Institute(s):
  1. Strukturelle und funktionelle Organisation des Gehirns (INM-1)
Research Program(s):
  1. 5254 - Neuroscientific Data Analytics and AI (POF4-525) (POF4-525)
  2. DFG project 347572269 - Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde (347572269) (347572269)
  3. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)
  4. HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015) (InterLabs-0015)
  5. Helmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62) (E.40401.62)

Appears in the scientific report 2023
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institutssammlungen > INM > INM-1
Dokumenttypen > Berichte > Vorabdrucke
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2023-09-26, letzte Änderung am 2023-11-22


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)