001     1017615
005     20250203103047.0
024 7 _ |a 10.1039/D3TA04060G
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-04231
|2 datacite_doi
024 7 _ |a WOS:001047520300001
|2 WOS
037 _ _ |a FZJ-2023-04231
082 _ _ |a 530
100 1 _ |a Ingber, Tjark T. K.
|0 0000-0002-9197-3216
|b 0
245 _ _ |a Elucidating the lithium deposition behavior in open-porous copper micro-foam negative electrodes for zero-excess lithium metal batteries
260 _ _ |a London ˜[u.a.]œ
|c 2023
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712750689_24401
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Unterstützt durch BMBF Grants: MEET Hi-EnD III” (03XP0258A), “ProLiFest” (03XP0253A) und “AMaLiS” (03XP0125D)
520 _ _ |a In zero-excess lithium metal batteries (ZELMBs), also termed “anode-free” LMBs, Li from the positive electrode is electrodeposited onto a bare current collector instead of the Li metal negative electrode commonly used in LMBs. This enables high theoretical energy density and facile, safe, and low-cost assembly. To tackle coulombic inefficiencies during Li deposition/dissolution, 3D structured current collectors can be used instead of 2D foil materials. This study elucidates the Li deposition behavior in custom-made open-porous Cu micro-foams from nucleation to large scale deposition. For the first time in ZELMBs, surface and sub-surface Li deposits in open-porous 3D materials are compared to deposits on 2D foils using cryogenic focused ion beam scanning electron microscopy (cryo-FIB-SEM). The results highlight that Cu micro-foams can store substantial amounts of dendrite-free Li in their open-porous 3D structure, minimizing detrimental volume changes during Li deposition/dissolution. Electrochemical analyses and simulations reveal that current density distribution over the large surface area of the Cu micro-foams reduces the Li nucleation overvoltage by ≈40%. Also, charge/discharge cycling in ZELMBs shows increases in coulombic efficiency, capacity retention, and cycle life. Overall, this work explains how open-porous Cu micro-foam current collectors improve the Li deposition behavior to boost the cycling characteristics of ZELMBs.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bela, Marlena M.
|0 0000-0002-9741-2989
|b 1
700 1 _ |a Püttmann, Frederik
|0 0009-0003-0948-6916
|b 2
700 1 _ |a Dohmann, Jan F.
|0 0000-0001-9870-0766
|b 3
700 1 _ |a Bieker, Peter
|0 P:(DE-Juel1)180777
|b 4
700 1 _ |a Börner, Markus
|0 0000-0002-8468-773X
|b 5
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 6
700 1 _ |a Stan, Marian
|0 P:(DE-Juel1)195878
|b 7
|e Corresponding author
|u fzj
773 _ _ |a 10.1039/D3TA04060G
|g Vol. 11, no. 33, p. 17828 - 17840
|0 PERI:(DE-600)2702232-8
|n 33
|p 17828 - 17840
|t Journal of materials chemistry / A
|v 11
|y 2023
|x 2050-7488
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1017615
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)195878
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a TIB: Royal Society of Chemistry 2021
|0 PC:(DE-HGF)0110
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER CHEM A : 2022
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2022
|d 2023-08-23
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21