| Home > Workflow collections > Publication Charges > Elucidating the lithium deposition behavior in open-porous copper micro-foam negative electrodes for zero-excess lithium metal batteries > print |
| 001 | 1017615 | ||
| 005 | 20250203103047.0 | ||
| 024 | 7 | _ | |a 10.1039/D3TA04060G |2 doi |
| 024 | 7 | _ | |a 2050-7488 |2 ISSN |
| 024 | 7 | _ | |a 2050-7496 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2023-04231 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001047520300001 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-04231 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Ingber, Tjark T. K. |0 0000-0002-9197-3216 |b 0 |
| 245 | _ | _ | |a Elucidating the lithium deposition behavior in open-porous copper micro-foam negative electrodes for zero-excess lithium metal batteries |
| 260 | _ | _ | |a London [u.a.] |c 2023 |b RSC |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712750689_24401 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a Unterstützt durch BMBF Grants: MEET Hi-EnD III” (03XP0258A), “ProLiFest” (03XP0253A) und “AMaLiS” (03XP0125D) |
| 520 | _ | _ | |a In zero-excess lithium metal batteries (ZELMBs), also termed “anode-free” LMBs, Li from the positive electrode is electrodeposited onto a bare current collector instead of the Li metal negative electrode commonly used in LMBs. This enables high theoretical energy density and facile, safe, and low-cost assembly. To tackle coulombic inefficiencies during Li deposition/dissolution, 3D structured current collectors can be used instead of 2D foil materials. This study elucidates the Li deposition behavior in custom-made open-porous Cu micro-foams from nucleation to large scale deposition. For the first time in ZELMBs, surface and sub-surface Li deposits in open-porous 3D materials are compared to deposits on 2D foils using cryogenic focused ion beam scanning electron microscopy (cryo-FIB-SEM). The results highlight that Cu micro-foams can store substantial amounts of dendrite-free Li in their open-porous 3D structure, minimizing detrimental volume changes during Li deposition/dissolution. Electrochemical analyses and simulations reveal that current density distribution over the large surface area of the Cu micro-foams reduces the Li nucleation overvoltage by ≈40%. Also, charge/discharge cycling in ZELMBs shows increases in coulombic efficiency, capacity retention, and cycle life. Overall, this work explains how open-porous Cu micro-foam current collectors improve the Li deposition behavior to boost the cycling characteristics of ZELMBs. |
| 536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Bela, Marlena M. |0 0000-0002-9741-2989 |b 1 |
| 700 | 1 | _ | |a Püttmann, Frederik |0 0009-0003-0948-6916 |b 2 |
| 700 | 1 | _ | |a Dohmann, Jan F. |0 0000-0001-9870-0766 |b 3 |
| 700 | 1 | _ | |a Bieker, Peter |0 P:(DE-Juel1)180777 |b 4 |
| 700 | 1 | _ | |a Börner, Markus |0 0000-0002-8468-773X |b 5 |
| 700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 6 |
| 700 | 1 | _ | |a Stan, Marian |0 P:(DE-Juel1)195878 |b 7 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1039/D3TA04060G |g Vol. 11, no. 33, p. 17828 - 17840 |0 PERI:(DE-600)2702232-8 |n 33 |p 17828 - 17840 |t Journal of materials chemistry / A |v 11 |y 2023 |x 2050-7488 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1017615 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)180777 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)166130 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)195878 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
| 915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
| 915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
| 915 | p | c | |a TIB: Royal Society of Chemistry 2021 |0 PC:(DE-HGF)0110 |2 APC |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-23 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-23 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b J MATER CHEM A : 2022 |d 2023-08-23 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MATER CHEM A : 2022 |d 2023-08-23 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2023-08-23 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-23 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
| 980 | _ | _ | |a APC |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|