Home > Publications database > A note on the wedge reversion antisymmetry operation and 51 types of physical quantities in arbitrary dimensions |
Journal Article | FZJ-2023-04596 |
2023
IUCr/Wiley
Chester
This record in other databases:
Please use a persistent id in citations: doi:10.1107/S2053273323003303 doi:10.34734/FZJ-2023-04596
Abstract: $\textrm{The}$ $\textrm{paper}$ $\textrm{by}$ $\textrm{Gopalan}$ $\textrm{[(2020).}$ $\textit{Acta}$ $\textit{Cryst.}$ $\textrm{A}$$\textbf{76}$$\textrm{,}$ $\textrm{318–327]}$ $\textrm{presented}$ $\textrm{an}$ $\textrm{enumeration}$ $\textrm{of}$ $\textrm{the}$ $\textrm{41}$ $\textrm{physical}$ $\textrm{quantity}$ $\textrm{types}$ $\textrm{in}$ $\textrm{non-relativistic}$ $\textrm{physics,}$ $\textrm{in}$ $\textrm{arbitrary}$ $\textrm{dimensions,}$ $\textrm{based}$ $\textrm{on}$ $\textrm{the}$ $\textrm{formalism}$ $\textrm{of}$ $\textrm{Clifford}$ $\textrm{algebra.}$ $\textrm{Gopalan}$ $\textrm{considered}$ $\textrm{three}$ $\textrm{antisymmetries:}$ $\textrm{spatial}$ $\textrm{inversion,}$ $\bar{1}$$\textrm{,}$ $\textrm{time}$ $\textrm{reversal,}$ $1′$$\textrm{,}$ $\textrm{and}$ $\textrm{wedge}$ $\textrm{reversion,}$ $1^\dagger$$\textrm{.}$ $\textrm{A}$ $\textrm{consideration}$ $\textrm{of}$ $\textrm{the}$ $\textrm{set}$ $\textrm{of}$ $\textrm{all}$ $\textrm{seven}$ $\textrm{antisymmetries}$ ($\bar{1}$$\textrm{,}$ $1'$$\textrm{,}$ $1^\dagger$$\textrm{,}$ $1'^\dagger$$\textrm{,}$ $\bar{1}^\dagger$$\textrm{,}$ $\bar{1}'$$\textrm{,}$ $\bar{1}'^\dagger$) $\textrm{leads}$ $\textrm{to}$ $\textrm{an}$ $\textrm{extension}$ $\textrm{of}$ $\textrm{the}$ $\textrm{results}$ $\textrm{obtained}$ $\textrm{by}$ $\textrm{Gopalan.}$ $\textrm{It}$ $\textrm{is}$ $\textrm{shown}$ $\textrm{that}$ $\textrm{there}$ $\textrm{are}$ $\textrm{51}$ $\textrm{types}$ $\textrm{of}$ $\textrm{physical}$ $\textrm{quantities}$ $\textrm{with}$ $\textrm{distinct}$ $\textrm{symmetry}$ $\textrm{properties}$ $\textrm{in}$ $\textrm{total.}$
Keyword(s): Basic research (1st) ; Crystallography (2nd) ; Condensed Matter Physics (2nd) ; Magnetism (2nd) ; Materials Science (2nd) ; Particle Physics (2nd)
![]() |
The record appears in these collections: |