Lecture (Other) FZJ-2023-05176

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
GPU Programming Part 1: Foundations

 ;  ;  ;  ;

2023

Lecture at JSC - as part of the Training Programme of Forschungszentrum Jülich (Jülich, Germany), 17 Apr 2023 - 19 Apr 20232023-04-172023-04-19 [10.34734/FZJ-2023-05176]

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: GPU-accelerated computing drives current scientific research. Writing fast numeric algorithms for GPUs offers high application performance by offloading compute-intensive portions of the code to a GPU.The course covers aspects of GPU architectures and programming. Focus is on the usage of the parallel programming language CUDA C++, which allows maximum control of NVIDIA GPU hardware. Examples of increasing complexity are used to demonstrate optimization and tuning of scientific applications.For the first time, the GPU Programming with CUDA course is held in two parts. This course is a basic course covering the foundations of GPU programming including an introduction to GPU/parallel computing, programming with CUDA, GPU libraries, tools for debugging and profiling, and performance optimizations.An advanced course with more involved and specific topics is available as an individual entry.


Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)
  2. 5122 - Future Computing & Big Data Systems (POF4-512) (POF4-512)
  3. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  4. ATML-X-DEV - ATML Accelerating Devices (ATML-X-DEV) (ATML-X-DEV)

Appears in the scientific report 2023
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Präsentationen > Vorlesungen
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2023-12-06, letzte Änderung am 2025-08-22


OpenAccess:
Multi_GPU_Programming_with_MPI_and_CUDA - Volltext herunterladen PDF
02_cuda_tools_mhrywniak - Volltext herunterladen PDF
04_cuda_transpose_mhrywniak - Volltext herunterladen PDF
3-Matrix_Multiplication - Volltext herunterladen PDF
aherten-cuda-intro - Volltext herunterladen PDF
CUDA_Streams_and_Events - Volltext herunterladen PDF
Externer link:
Volltext herunterladenVolltext
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)