001     1020973
005     20250204113750.0
024 7 _ |a 10.1002/sstr.202300425
|2 doi
024 7 _ |a 10.34734/FZJ-2024-00433
|2 datacite_doi
024 7 _ |a WOS:001130274600001
|2 WOS
037 _ _ |a FZJ-2024-00433
082 _ _ |a 540
100 1 _ |a Yan, Peng
|0 P:(DE-Juel1)186842
|b 0
|u fzj
245 _ _ |a Blended Salt Electrolyte Design for Enhanced NMC811||Graphite Cell Performance
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715081958_31030
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The high energy density, nickel-rich layered cathode material LiNi0.8Mn0.1Co0.1O2(NMC811) is recognized as a promising candidate for next-generation batterychemistries. However, due to their structural and interfacial instability, nickel-richNMC cathodes still face a number of challenges in practical application. For thisreason, the design and development of novel electrolyte formulations, able tostabilize the nickel-rich cathode|electrolyte interface, are highly demanded. In thiswork, a novel electrolyte is developed using lithium (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (LiDFTFSI) and lithium hexafluorophosphate(LiPF6) as salt blend in an organic carbonate-solvent based solvent mixture. Thepresence of LiDFTFSI notably enhances the electrochemical performance of theresulting NMC811||graphite cells. Further advancement of the considered cellchemistry is achieved by introducing the well-known functional electrolyteadditive vinylene carbonate (VC), which was found to feature a synergistic effectwith LiDFTFSI. The formation of a homogenous, effective, and robust solidelectrolyte interphase (SEI) as well as cathode electrolyte interphase (CEI) on thecorresponding electrodes resulted in superior electrochemical performance.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a BIG-MAP - Battery Interface Genome - Materials Acceleration Platform (957189)
|0 G:(EU-Grant)957189
|c 957189
|f H2020-LC-BAT-2020-3
|x 1
536 _ _ |a BATTERY 2030PLUS - BATTERY 2030+ large-scale research initiative: At the heart of a connected green society (957213)
|0 G:(EU-Grant)957213
|c 957213
|f H2020-LC-BAT-2020-3
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Shevchuk, Mykhailo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wölke, Christian
|0 P:(DE-Juel1)176954
|b 2
|u fzj
700 1 _ |a Pfeiffer, Felix
|0 P:(DE-Juel1)188450
|b 3
|u fzj
700 1 _ |a Berghus, Debbie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Baghernejad, Masoud
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Röschenthaler, Gerd-Volker
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 7
|u fzj
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 8
|e Corresponding author
773 _ _ |a 10.1002/sstr.202300425
|g p. 2300425
|0 PERI:(DE-600)3035497-3
|n 4
|p 2300425
|t Small structures
|v 5
|y 2024
|x 2688-4062
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1020973/files/Manuscript%20SS.docx
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1020973/files/Small%20Structures%20-%202023%20-%20Yan%20-%20Blended%20Salt%20Electrolyte%20Design%20for%20Enhanced%20NMC811%20Graphite%20Cell%20Performance.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1020973/files/Small%20Structures%20-%202023%20-%20Yan%20-%20Blended%20Salt%20Electrolyte%20Design%20for%20Enhanced%20NMC811%20Graphite%20Cell%20Performance.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1020973/files/Small%20Structures%20-%202023%20-%20Yan%20-%20Blended%20Salt%20Electrolyte%20Design%20for%20Enhanced%20NMC811%20Graphite%20Cell%20Performance.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1020973/files/Small%20Structures%20-%202023%20-%20Yan%20-%20Blended%20Salt%20Electrolyte%20Design%20for%20Enhanced%20NMC811%20Graphite%20Cell%20Performance.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1020973/files/Small%20Structures%20-%202023%20-%20Yan%20-%20Blended%20Salt%20Electrolyte%20Design%20for%20Enhanced%20NMC811%20Graphite%20Cell%20Performance.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1020973
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186842
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176954
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)188450
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)171204
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL STRUCT : 2022
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:03:47Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:03:47Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:03:47Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b SMALL STRUCT : 2022
|d 2024-12-19
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21