| Home > Workflow collections > Publication Charges > Blended Salt Electrolyte Design for Enhanced NMC811||Graphite Cell Performance |
| Journal Article | FZJ-2024-00433 |
; ; ; ; ; ; ; ;
2024
Wiley-VCH
Weinheim
This record in other databases:
Please use a persistent id in citations: doi:10.1002/sstr.202300425 doi:10.34734/FZJ-2024-00433
Abstract: The high energy density, nickel-rich layered cathode material LiNi0.8Mn0.1Co0.1O2(NMC811) is recognized as a promising candidate for next-generation batterychemistries. However, due to their structural and interfacial instability, nickel-richNMC cathodes still face a number of challenges in practical application. For thisreason, the design and development of novel electrolyte formulations, able tostabilize the nickel-rich cathode|electrolyte interface, are highly demanded. In thiswork, a novel electrolyte is developed using lithium (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (LiDFTFSI) and lithium hexafluorophosphate(LiPF6) as salt blend in an organic carbonate-solvent based solvent mixture. Thepresence of LiDFTFSI notably enhances the electrochemical performance of theresulting NMC811||graphite cells. Further advancement of the considered cellchemistry is achieved by introducing the well-known functional electrolyteadditive vinylene carbonate (VC), which was found to feature a synergistic effectwith LiDFTFSI. The formation of a homogenous, effective, and robust solidelectrolyte interphase (SEI) as well as cathode electrolyte interphase (CEI) on thecorresponding electrodes resulted in superior electrochemical performance.
|
The record appears in these collections: |