Poster (Invited) FZJ-2024-05128

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Predicting Brain Aging (Brain Age Gap) from Biomedical and Lifestyle Variables

 ;  ;  ;  ;  ;  ;  ;  ;

2024

Organization for Human Brain Mapping (OHBM) Annual Meeting 2024, SeoulSeoul, South Korea, 23 Jun 2024 - 27 Jun 20242024-06-232024-06-27 [10.34734/FZJ-2024-05128]

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: The Brain Age Gap (BAG) can be considered as an indicator of the brain health [1, 2]. BAG is defi ned as thedifference between an individual's chronological age and the age predicted by a machine learning (ML)algorithm based on individual brain features. While some studies demonstrated univariate associationsbetween the BAG and several lifestyle and biomedical variables [2, 3], a substantial gap persists inunderstanding the multivariate association between these factors and BAG. Here, we addressed this questionby using a wide range of biomedical, lifestyle, and sociodemographic variables conjointly to predict the BAG ina large population of the UK Biobank.


Contributing Institute(s):
  1. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 5251 - Multilevel Brain Organization and Variability (POF4-525) (POF4-525)
  2. 5252 - Brain Dysfunction and Plasticity (POF4-525) (POF4-525)

Appears in the scientific report 2024
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Präsentationen > Poster
Institutssammlungen > INM > INM-7
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2024-08-01, letzte Änderung am 2024-08-01


OpenAccess:
Mahdipour OHBM 2024 k3_OHBM_Preview_ - Volltext herunterladen PDF
Mostafa_Mahdipour_OHBM_Poster - Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)