Preprint FZJ-2024-06750

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Pitfalls in using ML to predict cognitive function performance

 ;  ;  ;  ;  ;  ;

2024

Research Square () [10.21203/rs.3.rs-4745684/v1]

This record in other databases:

Please use a persistent id in citations: doi:  doi:

Abstract: Machine learning analyses are widely used for predicting cognitive abilities, yet there are pitfalls that need to be considered during their implementation and interpretation of the results. Hence, the present study aimed at drawing attention to the risks of erroneous conclusions incurred by confounding variables illustrated by a case example predicting executive function performance by prosodic features. Healthy participants (n = 231) performed speech tasks and EF tests. From 264 prosodic features, we predicted EF performance using 66 variables, controlling for confounding effects of age, sex, and education. A reasonable model fit was apparently achieved for EF variables of the Trail Making Test. However, in-depth analyses revealed indications of confound leakage, leading to inflated prediction accuracies, due to a strong relationship between confounds and targets. These findings highlight the need to control confounding variables in ML pipelines and caution against potential pitfalls in ML predictions.


Contributing Institute(s):
  1. Strukturelle und funktionelle Organisation des Gehirns (INM-1)
  2. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 5254 - Neuroscientific Data Analytics and AI (POF4-525) (POF4-525)
  2. JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027) (JL SMHB-2021-2027)

Appears in the scientific report 2024
Database coverage:
Creative Commons Attribution CC BY 4.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institutssammlungen > INM > INM-7
Institutssammlungen > INM > INM-1
Dokumenttypen > Berichte > Vorabdrucke
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2024-12-05, letzte Änderung am 2024-12-13


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)