Journal Article FZJ-2025-00816

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Diagnosing ozone–NO x –VOC–aerosol sensitivity and uncovering causes of urban–nonurban discrepancies in Shandong, China, using transformer-based estimations

 ;  ;  ;  ;  ;  ;

2024
EGU Katlenburg-Lindau

Atmospheric chemistry and physics 24(7), 4177 - 4192 () [10.5194/acp-24-4177-2024]

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: Narrowing surface ozone disparities between urban and nonurban areas escalate health risks in densely populated urban zones. A comprehensive understanding of the impact of ozone photochemistry on this transition remains constrained by current knowledge of aerosol effects and the availability of surface monitoring. Here we reconstructed spatiotemporal gapless air quality concentrations using a novel transformer deep learning (DL) framework capable of perceiving spatiotemporal dynamics to analyze ozone urban–nonurban differences. Subsequently, the photochemical effect on these discrepancies was analyzed by elucidating shifts in ozone regimes inferred from an interpretable machine learning method. The evaluations of the model exhibited an average out-of-sample cross-validation coefficient of determination of 0.96, 0.92, and 0.95 for ozone, nitrogen dioxide, and fine particulate matter (PM2.5), respectively. The ozone sensitivity in nonurban areas, dominated by a nitrogen-oxide-limited (NOx-limited) regime, was observed to shift towards increased sensitivity to volatile organic compounds (VOCs) when extended to urban areas. A third “aerosol-inhibited” regime was identified in the Jiaodong Peninsula, where the uptake of hydroperoxyl radicals onto aerosols suppressed ozone production under low NOx levels during summertime. The reduction of PM2.5 could increase the sensitivity of ozone to VOCs, necessitating more stringent VOC emission abatement for urban ozone mitigation. In 2020, urban ozone levels in Shandong surpassed those in nonurban areas, primarily due to a more pronounced decrease in the latter resulting from stronger aerosol suppression effects and less reduction in PM2.5. This case study demonstrates the critical need for advanced spatially resolved models and interpretable analysis in tackling ozone pollution challenges.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2025-01-20, last modified 2025-02-03


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)