Contribution to a conference proceedings/Contribution to a book FZJ-2025-02460

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Creating a Virtual Population of the Human Nasal Cavity for Velocity-Based Predictions of Respiratory Flow Features Using Graph Convolutional Neural Networks

 ;  ;  ;  ;  ;

2025
Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag Jülich

Proceedings of the 35th Parallel CFD International Conference 2024
35th Parallel CFD International Conference 2024, ParCFD 2024, BonnBonn, Germany, 2 Sep 2024 - 4 Sep 20242024-09-022024-09-04
Jülich : Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag, Schriften des Forschungszentrums Jülich IAS Series 69, 80 - 83 () [10.34734/FZJ-2025-02460]

This record in other databases:

Please use a persistent id in citations: doi:  doi:

Abstract: GNNs can be applied to any shape or volume represented by a graph, e.g., triangulated shapes, or computational grids. Convolutional filters in GNNs operate on nodes and their neighboring nodes. This allows more efficient training compared to convolutional neural networks (CNNs), whose convolutional filters are rectangular and operate in Cartesian directions. The goal is to predict respiratory system flow features such as air resistance, wall shear stress, and energy flux within the human nasal cavity during inspiration. The initial step involves generating a virtual population through random scaling applied simultaneously to length, width, and height. Three distinct geometries are chosen to generate 297 virtual patients, including an average one based on 35 healthy patients, a Caucasian healthy patient, and an Asian healthy patient. The second part of the talk exposes the preliminary results based on 297 patients with physiological observations and discussions on the accuracy result of the GCNN model.


Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733) (951733)
  3. HANAMI - Hpc AlliaNce for Applications and supercoMputing Innovation: the Europe - Japan collaboration (101136269) (101136269)
  4. JLESC - Joint Laboratory for Extreme Scale Computing (JLESC-20150708) (JLESC-20150708)

Appears in the scientific report 2025
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Dokumenttypen > Bücher > Buchbeitrag
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2025-05-08, letzte Änderung am 2025-05-15


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)