Conference Presentation (After Call) FZJ-2025-03048

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A Dynamic Distance Social LSTM for Predicting Pedestrian Trajectories in Crowded Environments

 ;  ;

2025

Modelling, Data Analytics and AI in Engineering, MadeAI 2025, PortoPorto, Portugal, 7 Jul 2025 - 11 Jul 20252025-07-072025-07-11 [10.34734/FZJ-2025-03048]

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: This work introduces dynamic distance Social Long Short-Term Memory, a deep learning approach for pedestrian trajectory prediction in crowded environments. The approach integrates a new dynamic distance-based loss function into Social Long Short-Term Memory, enhancing collision avoidance without compromising displacement accuracy. The method is trained and evaluated on a heterogeneous density dataset and four homogeneous density datasets, covering various crowd-density levels. Experimental results show that the proposed approach outperforms baseline methods in reducing collision rates without decreasing displacement accuracy and, in most cases, even improving it.


Contributing Institute(s):
  1. Zivile Sicherheitsforschung (IAS-7)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)

Appears in the scientific report 2025
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Präsentationen > Konferenzvorträge
Institutssammlungen > IAS > IAS-7
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2025-07-14, letzte Änderung am 2025-07-29


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)