Contribution to a conference proceedings/Contribution to a book FZJ-2025-03345

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Engineering a large-scale data analytics and array computing library for research: Heat

 ;  ;  ;  ;  ;  ;  ;  ;

2025
Electronic Communications of the EASST

Electronic Communications of the EASST
Fourth Conference on Research Software Engineering in Germany, deRSE24, WürzburgWürzburg, Germany, 5 Mar 2024 - 7 Mar 20242024-03-052024-03-07
Electronic Communications of the EASST 1-26 () [10.14279/eceasst.v83.2626]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:  doi:

Abstract: Heat is a Python library for massively-parallel and GPU-accelerated arraycomputing and machine learning. It is developed by researchers for researchers,with the ultimate goal to make multi-dimensional array processing and machinelearning for scientists (almost) as easy on a supercomputer as it is on a workstationwith NumPy or scikit-learn. This paper highlights the relevance of this project to theresearch software engineering community by giving a short, but illustrative overviewof Heat and discusses its role in the context of related libraries with a specific focuson its research software aspects.

Keyword(s): Multi-dimensional Arrays ; Machine learning ; Data Science ; Data analytics ; High-Performance Computing ; Parallel Computing ; GPUs ; Big Data ; Research Software


Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)
  2. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  3. SLNS - SimLab Neuroscience (Helmholtz-SLNS) (Helmholtz-SLNS)

Appears in the scientific report 2025
Database coverage:
Creative Commons Attribution CC BY 4.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Dokumenttypen > Bücher > Buchbeitrag
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2025-08-03, letzte Änderung am 2025-12-11


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)