Preprint FZJ-2025-03504

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Synchronization and semantization in deep spiking networks

 ;  ;  ;  ;  ;  ;

2025
arXiv

arXiv () [10.48550/ARXIV.2508.12975]

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: Recent studies have shown how spiking networks can learn complex functionality through error-correcting plasticity, but the resulting structures and dynamics remain poorly studied. To elucidate how these models may link to observed dynamics in vivo and thus how they may ultimately explain cortical computation, we need a better understanding of their emerging patterns. We train a multi-layer spiking network, as a conceptual analog of the bottom-up visual hierarchy, for visual input classification using spike-time encoding. After learning, we observe the development of distinct spatio-temporal activity patterns. While input patterns are synchronous by construction, activity in early layers first spreads out over time, followed by re-convergence into sharp pulses as classes are gradually extracted. The emergence of synchronicity is accompanied by the formation of increasingly distinct pathways, reflecting the gradual semantization of input activity. We thus observe hierarchical networks learning spike latency codes to naturally acquire activity patterns characterized by synchronicity and separability, with pronounced excitatory pathways ascending through the layers. This provides a rigorous computational hypothesis for the experimentally observed synchronicity in the visual system as a natural consequence of deep learning in cortex.

Keyword(s): Neurons and Cognition (q-bio.NC) ; Neural and Evolutionary Computing (cs.NE) ; Computation (stat.CO) ; FOS: Biological sciences ; FOS: Computer and information sciences


Contributing Institute(s):
  1. Computational and Systems Neuroscience (IAS-6)
  2. Jara-Institut Brain structure-function relationships (INM-10)
Research Program(s):
  1. 5231 - Neuroscientific Foundations (POF4-523) (POF4-523)
  2. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)
  3. EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319) (101147319)
  4. JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027) (JL SMHB-2021-2027)
  5. Algorithms of Adaptive Behavior and their Neuronal Implementation in Health and Disease (iBehave-20220812) (iBehave-20220812)
  6. HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612) (HDS-LEE-20190612)

Appears in the scientific report 2025
Click to display QR Code for this record

The record appears in these collections:
Institutssammlungen > INM > INM-10
Institutssammlungen > IAS > IAS-6
Dokumenttypen > Berichte > Vorabdrucke
Workflowsammlungen > Öffentliche Einträge
Online First

 Datensatz erzeugt am 2025-08-19, letzte Änderung am 2025-10-15


Externer link:
Volltext herunterladen
Volltext
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)