Journal Article FZJ-2025-04521

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
3D-manufactured non-isothermal glass cell for thermophoretic measurements

 ;

2026
Elsevier Science Amsterdam [u.a.]

Applied thermal engineering 284, 128994 () [10.1016/j.applthermaleng.2025.128994]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Thermophoresis, the migration of particles within a thermal gradient, presents opportunities in diverse fields ranging from biotechnology to energy applications. The quantification of this phenomenon, described by the Soret coefficient (S_T), requires precise control over non-isothermal conditions, which is challenging to achieve in conventional microfluidic devices. However, conventional polymer-based cells are limited by a significant temperature drop across the material and susceptibility to the adhesion of colloidal particles. Recently, 3D-manufactured glass cells have been shown to produce a non-isothermal temperature field in a microchannel for inducing a significant temperature gradient due to high thermal conductivity, which enables temperature-dependent analysis of thermophoresis. Herein, we present a 3D-manufactured glass microfluidic cell for measuring the Soret coefficient under controlled temperature gradients. The cell produces a stable and a large temperature gradient across the channel which allows multi-temperature measurements without adjusting hot and cold water temperatures. The measured Soret coefficient by the glass cell across a temperature range of 20 °C to 30 °C shows close agreement with the benchmark measurement data. These results show that the 3D-manufactured glass cell can not only quantify the Soret coefficient but can also function as a solvent-resistant device, suitable for complex biological and chemical solutions.

Classification:

Contributing Institute(s):
  1. Biomakromolekulare Systeme und Prozesse (IBI-4)
Research Program(s):
  1. 5241 - Molecular Information Processing in Cellular Systems (POF4-524) (POF4-524)

Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Essential Science Indicators ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-4
Workflow collections > Public records
Publications database

 Record created 2025-11-17, last modified 2025-11-20


Restricted:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)