| Home > Publications database > Membrane binding of a cyanobacterial ESCRT ‐ III protein crucially involves the helix α 1‐3 hairpin conserved in all superfamily members |
| Journal Article | FZJ-2025-04625 |
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
2025
Wiley
Hoboken, NJ
This record in other databases:
Please use a persistent id in citations: doi:10.1002/pro.70387 doi:10.34734/FZJ-2025-04625
Abstract: IM30, the inner membrane-associated protein of 30 kDa (also known as Vipp1) is essential for thylakoid membrane biogenesis and/or maintenance in chloroplasts and cyanobacteria. IM30 and its bacterial homolog PspA belong to the ESCRT-III superfamily, proteins previously thought to be restricted to eukaryotes and archaea. Despite low sequence similarity, IM30 shares key structural and functional features with eukaryotic ESCRT-IIIs, including a conserved α1-α2 helical hairpin core and the ability to form oligomeric barrel or rod assemblies that mediate membrane remodeling. Using IM30 variants, we now show that membrane binding of IM30 is driven by electrostatic interactions between the positively charged α1-α3 helical hairpin and negatively charged lipid surfaces, paralleling the role of charged helical regions in some eukaryotic ESCRT-IIIs. This likely is followed by lateral assembly of IM30 into higher-order barrel or rod structures on the membrane. Once assembled, α0 helices within these oligomers engage and stabilize internalized membrane tubules, mirroring membrane interaction strategies of eukaryotic ESCRT-IIIs, which use both N-terminal sequence motifs and charged residues on α1/α2. Thus, our findings demonstrate a conserved membrane binding and remodeling mechanism across the ESCRT-III superfamily, underscoring an evolutionary link in membrane dynamics between pro- and eukaryotes.
|
The record appears in these collections: |