Contribution to a conference proceedings/Contribution to a book FZJ-2025-04879

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Rescuing Easy Samples in Self-Supervised Pretraining

 ;  ;

2025
SCITEPRESS - Science and Technology Publications
ISBN: 978-989-758-728-3

Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - SCITEPRESS - Science and Technology Publications, 2025. - ISBN 978-989-758-728-3 - doi:10.5220/0013167900003912
20th International Conference on Computer Vision Theory and Applications, PortoPorto, Portugal, 26 Feb 2025 - 28 Feb 20252025-02-262025-02-28
SCITEPRESS - Science and Technology Publications 400-409 () [10.5220/0013167900003912] special issue: "SCITEPRESS - Science and Technology Publications"

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Many recent self-supervised pretraining methods use augmented versions of the same image as samples for their learning schemes. We observe that ’easy’ samples, i.e. samples being too similar to each other after augmentation, have only limited value as learning signal. We therefore propose to rescue easy samples and make them harder. To do so, we select the top k easiest samples using cosine similarity, strongly augment them, forward-pass them through the model, calculate cosine similarity of the output as loss, and add it to the original loss in a weighted fashion. This method can be adopted to all contrastive or other augmented-pair based learning methods, whether they involve negative pairs or not, as it changes handling of easy positives, only. This simple but effective approach introduces greater variability into such self-supervised pretraining processes, significantly increasing the performance on various downstream tasks as observed in our experiments. We pretrain models of di fferent sizes, i.e. ResNet-50, ViT-S, ViT-B, or ViT-L, using ImageNet with SimCLR, MoCo v3, or DINOv2 training schemes. Here, e.g., we consistently find to improve results for ImageNet top-1 accuracy with a linear classifier establishing new SOTA for this task.


Contributing Institute(s):
  1. Datenanalyse und Maschinenlernen (IAS-8)
  2. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)
  2. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  3. SLNS - SimLab Neuroscience (Helmholtz-SLNS) (Helmholtz-SLNS)

Appears in the scientific report 2025
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Dokumenttypen > Bücher > Buchbeitrag
Institutssammlungen > IAS > IAS-8
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank

 Datensatz erzeugt am 2025-12-02, letzte Änderung am 2025-12-17


Restricted:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenVolltext
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)