Preprint FZJ-2025-04917

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
FlowTIE: Flow-based Transport of Intensity Equation for Phase Gradient Estimation from 4D-STEM Data

 ;  ;  ;  ;

2025
arXiv

arXiv () [10.48550/ARXIV.2511.07633]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: We introduce FlowTIE, a neural-network-based framework for phase reconstruction from 4D-Scanning Transmission Electron Microscopy (STEM) data, which integrates the Transport of Intensity Equation (TIE) with a flow-based representation of the phase gradient. This formulation allows the model to bridge data-driven learning with physics-based priors, improving robustness under dynamical scattering conditions for thick specimen. The validation on simulated datasets of crystalline materials, benchmarking to classical TIE and gradient-based optimization methods are presented. The results demonstrate that FlowTIE improves phase reconstruction accuracy, fast, and can be integrated with a thick specimen model, namely multislice method.

Keyword(s): Machine Learning (cs.LG) ; FOS: Computer and information sciences


Contributing Institute(s):
  1. Datenanalyse und Maschinenlernen (IAS-8)
Research Program(s):
  1. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)

Appears in the scientific report 2025
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institutssammlungen > IAS > IAS-8
Dokumenttypen > Berichte > Vorabdrucke
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2025-12-02, letzte Änderung am 2025-12-17


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)