001     1049187
005     20260119150421.0
024 7 _ |a 10.1016/j.jpowsour.2025.237593
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
037 _ _ |a FZJ-2025-05270
082 _ _ |a 620
100 1 _ |a Chang, Chia-Yu
|0 0009-0005-8143-6520
|b 0
|e Corresponding author
245 _ _ |a Enhanced stability and high rate capability of garnet solid-state electrolyte interface through integration of nanoscale Li4Ti5O12 for Li battery applications
260 _ _ |a New York, NY [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768831394_19886
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Bitte Postprint ergänzen!
520 _ _ |a Garnet-type solid-state electrolytes (SSE) have garnered considerable interest because of their high ionic conductivity and broad electrochemical window. However, poor interfacial contact with lithium metal remains a persistent challenge, leading to insufficient interfacial stability and low rate performances of the SSE. In this study, the surface of the garnet LLZTO (Li6.45Al0.05La3Zr1.6Ta0.4O12) SSE pellet is integrated with a nanoscale Li4Ti5O12 (LTO) through application of TiO2 using atomic layer deposition (ALD). The 2.5 nm TiO2 layer reacts with Li2CO3 on the surface and grain boundaries of LLZTO pellet to form the nanoscale Li4Ti5O12 (LTO) during the sintering process. The integrated nanoscale LTO enhances the wettability of LLZTO SSE with lithium metal and reduces the grain boundary resistance, providing a stable and zero-strain channel for lithium deposition and stripping. These features promote uniform lithium deposition and rapid lithium ion migration through LLZTO, thereby suppressing lithium dendrite formation and achieving high rate performance. These findings offer new insights into the surface modification strategies for garnet-type SSE aimed at improving their wettability, interfacial stability, and rate capability in lithium battery.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a AdamBatt - Fortschrittliche Materialien für die Anwendung in Hybriden Festkörperbatterien (13XP0305A)
|0 G:(BMBF)13XP0305A
|c 13XP0305A
|x 1
536 _ _ |a HIPSTER - Deployment of high pressure and temperature food processing for sustainable, safe and nutritious foods with fresh-like quality (635643)
|0 G:(EU-Grant)635643
|c 635643
|f H2020-SFS-2014-2
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wang, Chih-Chieh
|0 0000-0002-8939-0871
|b 1
700 1 _ |a Cheng, Cheng-Hung
|0 0009-0002-6572-6825
|b 2
700 1 _ |a Lu, Yen-Lin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lin, Shi-Hsin
|0 P:(DE-Juel1)191555
|b 4
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 5
|u fzj
700 1 _ |a Windmüller, Anna
|0 P:(DE-Juel1)188297
|b 6
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 7
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 8
|u fzj
700 1 _ |a Chiu, Kuo-Feng
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1016/j.jpowsour.2025.237593
|g Vol. 652, p. 237593 -
|0 PERI:(DE-600)1491915-1
|p 237593 -
|t Journal of power sources
|v 652
|y 2025
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/1049187/files/1-s2.0-S0378775325014296-main.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1049187/files/Ultra-thin%20TiO2%20modified%20Garnet-based%20Solid%20state%20electrolyte%20for%20Li%20batteries.docx
|y Restricted
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-Juel1)191555
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)162401
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)188297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2022
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2022
|d 2024-12-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21