Journal Article FZJ-2025-05270

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Enhanced stability and high rate capability of garnet solid-state electrolyte interface through integration of nanoscale Li4Ti5O12 for Li battery applications

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
Elsevier New York, NY [u.a.]

Journal of power sources 652, 237593 - () [10.1016/j.jpowsour.2025.237593]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Garnet-type solid-state electrolytes (SSE) have garnered considerable interest because of their high ionic conductivity and broad electrochemical window. However, poor interfacial contact with lithium metal remains a persistent challenge, leading to insufficient interfacial stability and low rate performances of the SSE. In this study, the surface of the garnet LLZTO (Li6.45Al0.05La3Zr1.6Ta0.4O12) SSE pellet is integrated with a nanoscale Li4Ti5O12 (LTO) through application of TiO2 using atomic layer deposition (ALD). The 2.5 nm TiO2 layer reacts with Li2CO3 on the surface and grain boundaries of LLZTO pellet to form the nanoscale Li4Ti5O12 (LTO) during the sintering process. The integrated nanoscale LTO enhances the wettability of LLZTO SSE with lithium metal and reduces the grain boundary resistance, providing a stable and zero-strain channel for lithium deposition and stripping. These features promote uniform lithium deposition and rapid lithium ion migration through LLZTO, thereby suppressing lithium dendrite formation and achieving high rate performance. These findings offer new insights into the surface modification strategies for garnet-type SSE aimed at improving their wettability, interfacial stability, and rate capability in lithium battery.

Classification:

Note: Bitte Postprint ergänzen!

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IET-1)
Research Program(s):
  1. 1223 - Batteries in Application (POF4-122) (POF4-122)
  2. AdamBatt - Fortschrittliche Materialien für die Anwendung in Hybriden Festkörperbatterien (13XP0305A) (13XP0305A)
  3. HIPSTER - Deployment of high pressure and temperature food processing for sustainable, safe and nutritious foods with fresh-like quality (635643) (635643)

Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > IET > IET-1
Workflow collections > Relevant for Publication database
Workflow collections > User submitted records

 Record created 2025-12-11, last modified 2026-01-19


Restricted:
Download fulltext DOCX
(additional files)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)