Journal Article PreJuSER-112055

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Mass spectrometry imaging (MSI) of metals by laser ablation ICP-MS and metallomics of biomedical samples

 ;

2012
IOS Press Birmingham, Ala.

Biomedical Spectroscopy and Imaging 1(3), 187 - 204 () [10.3233/BSI-2012-0016]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Trace metals are essential in life science and play a major role in biological processes. Knowledge of spatial distribution of metals and metal-containing proteins is fundamental for understanding the pathophysiology of metalloproteins, the impact of metal metabolism and metal-containing deposits in healthy brains and brains of patients suffering from neurological diseases. In recent years, there has been a growing interest in studying metal imaging in biological and especially in clinical tissues. In most neurodegenerative diseases, abnormal metal deposition has been observed within the brain (e.g., in Alzheimer's, Parkinson's or Wilson diseases). Laser-induced mass spectrometry is a novel emerging analytical tool to generate two- and three-dimensional maps of the distribution of elements, isotopes and molecules in different systems. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is one of the most important inorganic mass spectrometric technique for solid materials and has been successfully applied to produce quantitative images of detailed regionally specific element distributions in thin soft tissue sections of biological and clinical samples. The spatial resolved “BrainMet” techniques (BrainMet – Bioimaging of Metals in Brain and Metallomics) developed at Research Centre Juelich have been created and established for metal distribution studies in thin biomedical cryosection and it can be employed for fundamental biomedical investigation of biochemical pathways up to single cell level and in future for disease diagnostics and neuroprotective therapies of neurological disorders.

Classification:

Note: Record converted from VDB: 16.11.2012

Contributing Institute(s):
  1. Zentralabteilung für Chemische Analysen (ZCH)
Research Program(s):
  1. Funktion und Dysfunktion des Nervensystems (P33)

Appears in the scientific report 2012
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ZEA > ZEA-3
Workflow collections > Public records
Publications database

 Record created 2012-11-16, last modified 2018-02-11



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)