Journal Article FZJ-2012-00666

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Effects of light and circulation clock on growth and chlorophyll accumulation of Nannochloropsis gaditana (Eustigmatophyte)

 ;  ;  ;

2014
Wiley-Blackwell Oxford [u.a.]

Journal of phycology: a bimonthly of the Phycological Society of America 50(3), 515 - 525 () [10.1111/jpy.12177]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Circadian clocks synchronize various physiological, metabolic and developmental processes of organisms with specific phases of recurring changes in their environment (e.g. day and night or seasons). Here, we investigated whether the circadian clock plays a role in regulation of growth and chlorophyll (Chl) accumulation in Nannochloropsis gaditana, an oleaginous marine microalga which is considered as a potential feedstock for biofuels and for which a draft genome sequence has been published. Optical density (OD) of N. gaditana culture was monitored at 680 and 735 nm under 12:12 h or 18:6 h light-dark (LD) cycles and after switching to continuous illumination in photobioreactors. In parallel, Chl fluorescence was measured to assess the quantum yield of photosystem II. Furthermore, to test if red- or blue-light photoreceptors are involved in clock entrainment in N. gaditana, some of the experiments were conducted by using only red or blue light. Growth and Chl accumulation were confined to light periods in the LD cycles, increasing more strongly in the first half than in the second half of the light periods. After switching to continuous light, rhythmic oscillations continued (especially for OD680) at least in the first 24 h, with a 50% decrease in the capacity to grow and accumulate Chl during the first subjective night. Pronounced free-running oscillations were induced by blue light, but not by red light. In contrast, the photosystem II quantum yield was determined by light conditions. The results indicate interactions between circadian and light regulation of growth and Chl accumulation in N. gaditana.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 242 - Sustainable Bioproduction (POF2-242) (POF2-242)
  2. 89582 - Plant Science (POF2-89582) (POF2-89582)

Appears in the scientific report 2014
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-2
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2012-12-15, letzte Änderung am 2021-01-29



Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)